## SENQUIP

## **ORB** Tech Tip

## TT004: Hall-Effect Flow Sensor

This technical tip shows how to connect a hall-effect turbine flow sensor to the ORB-X1. This sensor is ideal for low flow rate monitoring where high repeatability and high reliability are required. The sensor will be connected to one of the frequency inputs on the ORB-X1. It is assumed in this tech tip that flow rate and total flow are required.

| Sensor Parameters |                                                                                    |  |
|-------------------|------------------------------------------------------------------------------------|--|
| Part Number       | 173931-C                                                                           |  |
| Туре              | FT-110 Series – TurboFlow ${\ensuremath{\mathbb R}}$ Economical Flow -Rate Sensors |  |
| Range             | 0.5 - 5l/m (other flow rates available in same series)                             |  |
| Output            | NPN Sinking Open Collector @ 20mA Maximum                                          |  |
| Calibration       | 58-575Hz = 0.5 – 5l/m                                                              |  |
| Cable Length      | 3ft                                                                                |  |
| Supply Voltage    | 5 – 24V DC                                                                         |  |
| Supplied by       | www.element14.com                                                                  |  |



Hall-Effect Flow Sensor





| Setting (Input 1)        | Value     | Comment                                                                 |
|--------------------------|-----------|-------------------------------------------------------------------------|
| Name                     | Tank 1    | A meaningful name for the sensor data                                   |
| Interval                 | 1         | 1 means the sensor is sampled on every base interval                    |
| Mode                     | Frequency | The sensors output is a square wave of varying frequency                |
| Warning                  | Disabled  | Warnings are disabled in this example                                   |
| Alarm                    | Disabled  | Alarms are disabled in this example                                     |
| Alarm/Warning Hysteresis | 1         | The amount by which the flow needs to change to exit a warning or alarm |
| Calibration Low In       | 58        | The datasheets specifies that 58Hz represents 0.5I/m                    |
| Calibration High In      | 575       | The datasheets specifies that 575Hz represents 5I/m                     |
| Calibration Low Out      | 0.5       | The datasheets specifies that 58Hz represents 0.5I/m                    |
| Calibration High Out     | 5         | The datasheets specifies that 575Hz represents 5I/m                     |
| Calibration Unit         | l/m       | The unit of measure for the calibration; litres per minute              |
| Pulse Counting           | Enabled   | We will count the pulses to calculate total volume                      |
| Pulse Scaling            | 0.0001437 | 58Hz for 1m (3480 pulses) represents 0.5I so 1 pulse is 0.5/3480 litres |
| Scaling Unit             | 1         | In this case the unit will be litres                                    |
| Reset Value              | 1000      | The counter resets after each kilolitre                                 |