

 Document Number Revision Prepared By Approved By
 APN0037 1.0 NGB NB

 Title Page
 Connecting to a KPV200 Vibration Sensor 1 of 22

Copyright © 2023 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

CONNECTING TO A KPV200 VIBRATION SENSOR

1. Introduction

The KPV200 vibration sensor provides precise vibration monitoring and on-board signal processing for industrial and
commercial applications. Equipped with integrated Fast Fourier Transform (FFT) capabilities, the sensor performs
real-time frequency domain analysis directly within the device, eliminating the need for external processing
hardware.

This advanced functionality allows for the early detection of mechanical issues such as imbalance, misalignment, or
bearing wear by identifying characteristic vibration signatures. The sensor features a broad frequency response
range, high sensitivity, and a rugged design suitable for demanding environments.

This application note describes how to interface a KPV200 sensor to a Senquip device to enable remote vibration
monitoring. The end application will:

• read the current vibration profile,

• provide an option to enable the learning of a typical profile,

• show the current profile and alarm profile on a bar chart,

• show the current alarm status,

• allow alarms to be cleared.

Figure 1- KPV200 Vibration Sensor

Extensive use of the Senquip scripting language will be used in this application note. Further details on the Senquip
scripting language can be found in the Device Scripting Guide.

https://docs.senquip.com/scripting_guide/

 Document Number Revision Prepared By Approved By
 APN0037 1.0 NGB NB

 Title Page
 Connecting to a KPV200 Vibration Sensor 2 of 22

Copyright © 2023 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

2. Connection the KPV200 to a Senquip Device

A Senquip QUAD-C2 was used in this application.

An RS485 to USB converter was used to connect the KPV200 to a PC. We also connected the RS485 network to the
QUAD. Having the PC on the network allowed us to run the sensor supplier software and then later run a terminal
program to monitor traffic on the bus.

A vibration motor with an offset weight was attached to the vibration sensor, and the frequency was tuned to
approximately 70Hz by changing the supply voltage.

Figure 2 - Vibration Motor

The Senquip QUAD was supplied with 24V, and the QUAD internal voltage generator was used to provide 12V to the
vibration sensor through IO5. The voltage and current supplied to the sensor on IO5 were monitored.

Figure 3 – Vibration Sensor Connection to Senquip QUAD

The Senquip QUAD was configured with a Base Interval of 10 seconds and the serial port was set to RS485, with a
baud rate of 115200, 8 bits, even parity, and 1 stop bit. The serial port Mode was set as scripted as the serial port
will be completely controlled within a script.

https://senquip.com/homepage/products/

 Document Number Revision Prepared By Approved By
 APN0037 1.0 NGB NB

 Title Page
 Connecting to a KPV200 Vibration Sensor 3 of 22

Copyright © 2023 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Figure 4 - Serial Port Settings with Even Parity

Figure 5 - IO5 Providing 12V and Monitoring Voltage and Current

 Document Number Revision Prepared By Approved By
 APN0037 1.0 NGB NB

 Title Page
 Connecting to a KPV200 Vibration Sensor 4 of 22

Copyright © 2023 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

3. Getting to Know the KPV200 Sensor
Kjaerulf Pedersen, the sensor suppler, provide LabVIEW based software that shows live data and allows for settings

updates.

Figure 6 - Supplier Provided Software Showing Live Vibration Data

Using the software, the sensor was configured as shown in Figure 7. A sampling frequency of 400Hz was chosen to

allow a maximum frequency of 200Hz to be measured. For more information on sampling frequencies, see this

article on Nyquist frequency. Note the even parity.

Figure 7 - KPV200 Settings

https://en.wikipedia.org/wiki/Nyquist_frequency

 Document Number Revision Prepared By Approved By
 APN0037 1.0 NGB NB

 Title Page
 Connecting to a KPV200 Vibration Sensor 5 of 22

Copyright © 2023 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

To test the functionality of the sensor, we started the learning function and ran it for 10 minutes. After that time,

we could see that an alarm profile had been built that matched the envelope of vibration and had a 10mG offset as

configured. We noticed that once cleared, the alarm would stay off for a short while and then turned back on.

Because of this, we left the sensor in learning mode for an hour. After an hour, the alarm could be cleared, and it

would stay cleared.

To better understand the interface to the sensor, we then moved to requesting Modbus data from the KPV200 using

Realterm, a serial monitor program. The KPV200 User Guide contains a Modbus register map for the sensor which is

duplicated in

https://sourceforge.net/projects/realterm/
https://kpsensorsystems.com/wp-content/uploads/2021/03/User-guide-KPV200-Software-ver.-1.3.pdf

 Document Number Revision Prepared By Approved By
 APN0037 1.0 NGB NB

 Title Page
 Connecting to a KPV200 Vibration Sensor 6 of 22

Copyright © 2023 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Appendix II – KPV200 Register Description.

As a sanity check, the baud rate was read back from the sensor.

 Device Address Function
Code

Register Address Number of Registers Checksum

1 byte 1 byte 2 bytes 2 bytes 2 bytes

Request 0xF7 (247) 0x03 0x01
(MSB)

0xF9
(LSB)

0x00
(MSB)

0x01
(LSB)

0x41
(MSB)

0x51
(LSB)

 Device
Address

Function
Code

Bytes to Follow Data Checksum

1 byte 1 byte 1 byte 2 bytes 2 bytes

Response 0xF7 (247) 0x03 0x02

0x04
(MSB)

0x80
(LSB)

0x73
(MSB)

0x31
(LSB)

In RealTerm, the green text shows the command, and the yellow is the response. Looking at the response data

0x0480 = 1152 or a baud rate of 115200 as expected.

Figure 8- Baud Rate Read in RealTerm

3.1. Reading Vibration Data
Current vibration data is held in 128 input (function code 4) registers of type unsigned int.

 Document Number Revision Prepared By Approved By
 APN0037 1.0 NGB NB

 Title Page
 Connecting to a KPV200 Vibration Sensor 7 of 22

Copyright © 2023 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Data Address Description Data Type Value range

0 Vibration data first bin Unsigned int 0-255

127 Vibration data last bin Unsigned int 0-255

The Modbus RTU standard allows for a maximum message length of 256 bytes. Given that each register is 2 bytes,

not all registers can be read in a single read. Either two reads must be done, or some of the registers must be

forfeited, resulting in a lower maximum frequency. We will do two reads to retrieve all 128 register values.

The read commands for reading the first 64 and second 64 registers are shown below.

 Device Address Function
Code

Register Address Number of Registers Checksum

1 byte 1 byte 2 bytes 2 bytes 2 bytes

First 64 bins 0xF7 (247) 0x04 0x00
(MSB)

0x00
(LSB)

0x00
(MSB)

0x40
(LSB)

0xE5
(MSB)

0x6C
(LSB)

Last 64 bins 0xF7 (247) 0x04 0x00
(MSB)

0x40
(LSB)

0x00
(MSB)

0x40
(LSB)

0xE4
(MSB)

0xB8
(LSB)

The read requests were tested in RealTerm and resulted in 64 registers (128 bytes) being returned for each request.

 Document Number Revision Prepared By Approved By
 APN0037 1.0 NGB NB

 Title Page
 Connecting to a KPV200 Vibration Sensor 8 of 22

Copyright © 2023 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Similarly, the learned frequency profile, referred to as the Known Curve in the documentation, and the alarm profile,

can be read as below. The Modbus CRC can be calculated using this online CRC Calculator. Note that the CRC bytes

need to be flipped as the endianness of the calculator is different to the Modbus standard. In the final application,

the CRC’s will be calculated in the script on the Senquip device.

 Device
Address

Function
Code

Register Address Number of Registers Checksum

1 byte 1 byte 2 bytes 2 bytes 2 bytes

Learned Profile
First 64 bins

0xF7 (247) 0x03 0x00
(MSB)

0x00
(LSB)

0x00
(MSB)

0x40
(LSB)

0x50
(MSB)

0xAC
(LSB)

Learned Profile
Last 64 bins

0xF7 (247) 0x03 0x00
(MSB)

0x40
(LSB)

0x00
(MSB)

0x40
(LSB)

0x51
(MSB)

0x78
(LSB)

Alarm Profile
First 64 bins

0xF7 (247) 0x03 0x00
(MSB)

0x80
(LSB)

0x00
(MSB)

0x40
(LSB)

0x51
(MSB)

0x44
(LSB)

Alarm Profile
Last 64 bins

0xF7 (247) 0x03 0x00
(MSB)

0xC0
(LSB)

0x00
(MSB)

0x40
(LSB)

0x50
(MSB)

0x90
(LSB)

3.2. Writing to the Sensor

To start and stop the learning function, and to clear alarm data, we need to be able to write to registers on the
KPV200 sensor. Writing to the sensor is achieved with the write multiple function code (dec 16, hex 0x10).

 Device
Address

Function
Code

Register
Address

Number of
Registers

Number
of Bytes

Data Bytes Checksum

1 byte 1 byte 2 bytes 2 bytes 1 byte 2 bytes 2 bytes

Start
Learning

0xF7
(247)

0x10 0x02
(MSB)

0xBE
(LSB)

0x00
(MSB)

0x01
(LSB)

0x02 0x00
(MSB)

0x01
(LSB)

0x70
(MSB)

0xEA
(LSB)

Stop
Learning

0xF7
(247)

0x10 0x02
(MSB)

0xBF
(LSB)

0x00
(MSB)

0x01
(LSB)

0x02 0x00
(MSB)

0x00
(LSB)

0xB0
(MSB)

0xFB
(LSB)

Clear
Alarm

0xF7
(247)

0x10 0x02
(MSB)

0xBC
(LSB)

0x00
(MSB)

0x01
(LSB)

0x02 0x00
(MSB)

0x01
(LSB)

0x71
(MSB)

0x08
(LSB)

4. The Scripted Application

The scripted application will

• read the current vibration profile,

• allow an alarm profile to be learned,

• show the current profile and alarm profile on a bar chart,

• show the current alarm status,

• allow alarms to be cleared.

The script starts by issuing a Modbus command to the sensor. Based on the response to this command, further
commands are issued. The process of issuing a command and receiving the feedback is asynchronous. Once the
Modbus command is issued, the script continues on. This allows the Senquip device to continue with other functions
while it is waiting for the sensor to respond and prevents the device freezing if the sensor never responds. A new
callback function, modparse_cb, triggers when a valid Modbus response is detected on the serial port. The

https://crccalc.com/?crc=123456789&method=CRC-16/MODBUS&datatype=ascii&outtype=hex

 Document Number Revision Prepared By Approved By
 APN0037 1.0 NGB NB

 Title Page
 Connecting to a KPV200 Vibration Sensor 9 of 22

Copyright © 2023 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

modparse_cb function checks the length of the message and CRC to ensure valid Modbus data before being
executed.

Looking at the script, firstly, libraries are included, and variables are declared to store vibration, alarm data, and
indicators as to whether the sensor is in a learning state and an alarm state.

Since the alarm profile does not change much over time, to save on transmitted data, it will only be sent periodically.
The variables cycle and dispatchAlarmProfile are used to track when the alarm profile should be sent.

A debug function that sends data over Wi-Fi via UDP was used to assist in debugging. The UDP endpoint needs to be
configured in the Endpoint Settings and a UDP client used to view the data. For more information on debugging with
UDP, see Application Note AN002 – Connecting a Senquip Device to a UDP Server over Wi-Fi.

A structure that contains all the Modbus requests that will be used is created. The requests are sent to the sensor
using the modbusSend function that receives the command, adds a CRC, and sends it via the serial port. Note the
additional SERIAL.LOOPBACK flag that allows transmitted serial data to be routed to the modparse_cb callback
function to allow it to then look for a valid Modbus response.

A helper function, nextRead, is defined that uses a timer to schedule the next Modbus read after an interval. The
function is used to schedule the next Modbus command based on the result of the latest response. For instance,
when we have finished reading the first 64 registers of the current vibration data, we can schedule the read of the
next 64 registers after a delay that allows for the processing of the first 64 to be completed and the processing
function to be exited.

load('senquip.js');

load('api_config.js');

load('api_serial.js');

load('api_timer.js');

load('api_endpoint.js');

let vibration = []; // vibration profile

let alarm = []; // goal profile

let command = ''; // commands to be sent to the sensor

let learnstate = ''; // learn status of sensor

let alarmstate = 0; // alarm state of sensor

let cycle = 0;

let dispatchAlarmProfile = false;

function debug(s) {UDP.send(s);}

https://cdn.senquip.com/wp-content/uploads/2024/09/17113646/APN0002-Rev-1.2-Connecting-a-Senquip-Device-to-a-UDP-Server-Over-WiFi.pdf

 Document Number Revision Prepared By Approved By
 APN0037 1.0 NGB NB

 Title Page
 Connecting to a KPV200 Vibration Sensor 10 of 22

Copyright © 2023 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

The data_handler runs at the end of every base interval. It first checks if any requests have been issued by the user
to start or stop learning, or to clear alarms. If a command has been issued, the Modbus command to execute this
request is sent to the sensor. If no commands are pending, the first register to be requested from the sensor is the
alarm status. Once the first Modbus command has been issued, the script continues to dispatch state information
and exits. When a response to the Modbus request is received, the modparse_cb callback function will be triggered.

let modbusCommand = {

 'value0' : '\xF7\x04\x00\x00\x00\x40', // read first 64 vibration values

 'value1' : '\xF7\x04\x00\x40\x00\x40', // read second 64 vibration values

 'alarm0' : '\xF7\x03\x00\x80\x00\x40', // read first 64 alarm values

 'alarm1' : '\xF7\x03\x00\xC0\x00\x40', // read second 64 alarm values

 'alarmstate' : '\xF7\x04\x00\x80\x00\x01', // read the current alarm state

 'startlearn': '\xF7\x10\x02\xBE\x00\x01\x02\x00\x01', // start learning the vibration profile

 'stoplearn' : '\xF7\x10\x02\xBF\x00\x01\x02\x00\x00', // stop learning the vibration profile

 'clearalarm': '\xF7\x10\x02\xBC\x00\x01\x02\x00\x01' // clear alarms

};

function modbusSend(cmd_str) {

 let crc = SQ.crc(cmd_str);

 let crc_str = SQ.encode(crc, -SQ.U16);

 let modbus_str = cmd_str + crc_str;

 SERIAL.write(1, modbus_str, modbus_str.length, SERIAL.LOOPBACK);

}

function nextRead(next_cmd, delay_ms) {

 // Pass index to the timer function as the userdata parameter

 Timer.set(delay_ms, 0, function(next_cmd) {

 modbusSend(next_cmd);

 }, next_cmd);

}

SQ.set_data_handler(function()

{

 if (command === 'startlearn'){

 modbusSend(modbusCommand.startlearn);

 }

 else if (command === 'stoplearn'){

 modbusSend(modbusCommand.stoplearn);

 }

 else if (command === 'clearalarm'){

 modbusSend(modbusCommand.clearalarm);

 }

 else {

 dispatchAlarmProfile = cycle % 10 === 0;

 modbusSend(modbusCommand.alarmstate);

 cycle++;

 }

 if (learnstate === 'Learning profile') {alarmstate = 'Monitoring off during learning';}

 SQ.dispatch(3,learnstate);

 SQ.dispatch(4,alarmstate);

}, null);

SQ.set_trigger_handler(function(tp) {

 if (tp === 1) { command = 'startlearn'; } // start learning

 if (tp === 2) { command = 'stoplearn'; } // stop learnig

 if (tp === 3) { command = 'clearalarm'; } // clear the alarm flag

 }, null);

 Document Number Revision Prepared By Approved By
 APN0037 1.0 NGB NB

 Title Page
 Connecting to a KPV200 Vibration Sensor 11 of 22

Copyright © 2023 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

The modparse_cb function is configured and starts to monitor serial traffic on serial channel 1. In this instance, the
function is configured to trigger when Modbus data is detected that completes a previous Modbus request. If no
response is received after 350msec, the function will stop looking for a valid response.

The parsing of Modbus responses, and the issuing of subsequent Modbus requests is performed in the modparse_cb
callback function. When triggered, the slave address, function code, register address, length of data, and the actual
data are passed to the function. The function code and register address are used to identify which Modbus request
is being responded to, and based on this, the data is parsed, and the next Modbus request is made. For instance, if a
response to the alarm state request has been received, the alarm status is set, and the Modbus request for the first
64 vibration values is requested. If the first 64 vibration values response has been received, the vibration data is
loaded into an array and the next 64 values are requested, and so on.

// Possible Modbus parsing modes:

// 0 = Disabled

// 1 = Callback triggers for all requests and responses

// 2 = Callback triggers for only requests

// 3 = Callback triggers for valid responses that complete a request (sniffer bus data)

let mode = 3;

let timeout_ms = 350;

let serial_ch = 1;

SERIAL.set_modparse(serial_ch, mode, modparse_cb, timeout_ms, null);

 Document Number Revision Prepared By Approved By
 APN0037 1.0 NGB NB

 Title Page
 Connecting to a KPV200 Vibration Sensor 12 of 22

Copyright © 2023 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

// This callback fires when a valid Modbus request or response is detected (depending on the mode)// The

CRC, function code and length are used to check the message is valid

function modparse_cb(slave_addr, func, reg_addr, data_len, data) {

 let s = '';

 if (data !== null) {

 s = mkstr(data, data_len);

 debug(JSON.stringify({addr: slave_addr, f: func, reg: reg_addr, l: data_len}));

 if (func === 16 && reg_addr === 0x02BE) { // start learning

 learnstate = 'Learning profile';

 command = '';

 nextRead(modbusCommand.value0, 400); // read first 64 registers of current value

 }

 else if (func === 16 && reg_addr === 0x02BF) { // stop learning

 learnstate = 'Learning complete';

 command = '';

 dispatchAlarmProfile = true; // get the learned profile on this cycle

 nextRead(modbusCommand.alarmstate, 400); // read first 64 registers of current value

 }

 else if (func === 16 && reg_addr === 0x02BC) { // clear alarm

 command = '';

 nextRead(modbusCommand.alarmstate, 400); // read first 64 registers of current value

 }

 else if (func === 4 && reg_addr === 0x80) { // alarm state

 SQ.dispatch(5,s);

 if (s === '\x01\x00') {alarmstate = 'Alarm';} else {alarmstate = 'Ok';}

 nextRead(modbusCommand.value0, 400); // read first 64 registers of current value

 }

 else if (func === 4 && reg_addr === 0x00) {

 vibration = [];

 for (let i = 0; i < 64; i++) {

 vibration[i] = data[i*2+1];

 }

 nextRead(modbusCommand.value1, 400); // read second 64 registers of current value

 }

 else if (func === 4 && reg_addr === 0x40) {

 for (let i = 0; i < 64; i++) {

 vibration[i+64] = data[i*2+1];

 }

 SQ.dispatch(1,JSON.stringify(vibration));

 if (dispatchAlarmProfile) {

 nextRead(modbusCommand.alarm0,400); // read first 64 registers of alarm value;

 }

 }

 else if (func === 3 && reg_addr === 0x80) {

 alarm = [];

 for (let i = 0; i < 64; i++) {

 alarm[i] = data[i*2+1];

 }

 nextRead(modbusCommand.alarm1,400); // read second 64 registers of alarm value;

 }

 else if (func === 3 && reg_addr === 0xC0) {

 for (let i = 0; i < 64; i++) {

 alarm[i+64] = data[i*2+1];

 }

 SQ.dispatch(2,JSON.stringify(alarm));

 }

 }

}

 Document Number Revision Prepared By Approved By
 APN0037 1.0 NGB NB

 Title Page
 Connecting to a KPV200 Vibration Sensor 13 of 22

Copyright © 2023 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

5. Setting Up the Display
Vibration data is dispatched to the Senquip Portal as a stringified JSON array of numbers. By default, the when the

Portal detects data formatted in this way, it will display it as a bar chart in a standard widget.

Figure 9 - Default Display for a Stringified Array of Numbers

To see the actual data being sent, use the eye icon at the bottom right of the widget to change the display format to

HEX.

Figure 10 - Stringified Array of Numbers Shown as Hex

5.1. Displaying the Vibration and Alarm Data on a Chart

Use the Add Custom Chart option in the device display settings menu to create a new bar chart.

In this example, a Bar chart of width 2 and height 2 is chosen. The x-axis is named Frequency, and the axis is scaled
so that the 128 data points map to an x-axis scale of 0-200.

A y-axis called mG is added and the range is set between 0 and 200mG.

 Document Number Revision Prepared By Approved By
 APN0037 1.0 NGB NB

 Title Page
 Connecting to a KPV200 Vibration Sensor 14 of 22

Copyright © 2023 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

The Vibration Data and Alarm data are added as series on the chart. The Alarm data is set as being a Goal series.
The Goal series will always appear in front of the other series, and it only needs to be refreshed every 600 cycles.
This is done to save the amount of data that has to be transmitted on every cycle.

The device page will now show the vibration data as a list of numbers, and the vibration and alarm values on a bar
chart.

 Document Number Revision Prepared By Approved By
 APN0037 1.0 NGB NB

 Title Page
 Connecting to a KPV200 Vibration Sensor 15 of 22

Copyright © 2023 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

6. Results
With the sensor and vibration motor connected and data being received, the Start Learning function was initiated.

After a few minutes, the learning was terminated. The vibration data was seen to be below the alarm threshold in

all cases.

After a short while, the Alarm Status widget change to “Alarm”.

 Document Number Revision Prepared By Approved By
 APN0037 1.0 NGB NB

 Title Page
 Connecting to a KPV200 Vibration Sensor 16 of 22

Copyright © 2023 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

It was noted that a single frequency bin at around 67Hz has exceeded the alarm threshold.

Learning was initiated for a while longer and after having cancelled the alarm, it did not re-appear until the

frequency of the motor was changed.

 Document Number Revision Prepared By Approved By
 APN0037 1.0 NGB NB

 Title Page
 Connecting to a KPV200 Vibration Sensor 17 of 22

Copyright © 2023 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

7. Conclusions
The KPV200 vibration sensor was integrated with a Senquip QUAD to enable the following features:

• read the current vibration profile,

• provide an option to enable the learning of a typical profile,

• show the current profile and alarm profile on a bar chart,

• show the current alarm status,

• allow alarms to be cleared.

The integration was simple, with the sensor being powered by an output from the Senquip device. The new

modparse_cb callback function allowed an asynchronous application to be written that allows the Senquip device to

continue operating even when the volume of Modbus data being transferred is high.

 Document Number Revision Prepared By Approved By
 APN0037 1.0 NGB NB

 Title Page
 Connecting to a KPV200 Vibration Sensor 18 of 22

Copyright © 2023 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

8. Appendix I – Example Script
load('senquip.js');

load('api_config.js');

load('api_serial.js');

load('api_timer.js');

load('api_endpoint.js');

let vibration = []; // vibration profile

let alarm = []; // goal profile

let command = ''; // commands to be sent to the sensor

let learnstate = ''; // learn status of sensor

let alarmstate = 0; // alarm state of sensor

let cycle = 0;

let dispatchAlarmProfile = false;

function debug(s) {UDP.send(s);}

let modbusCommand = {

 'value0' : '\xF7\x04\x00\x00\x00\x40', // read first 64 vibration values

 'value1' : '\xF7\x04\x00\x40\x00\x40', // read second 64 vibration values

 'alarm0' : '\xF7\x03\x00\x80\x00\x40', // read first 64 alarm values

 'alarm1' : '\xF7\x03\x00\xC0\x00\x40', // read second 64 alarm values

 'alarmstate' : '\xF7\x04\x00\x80\x00\x01', // read the current alarm state

 'startlearn': '\xF7\x10\x02\xBE\x00\x01\x02\x00\x01', // start learning the vibration profile

 'stoplearn' : '\xF7\x10\x02\xBF\x00\x01\x02\x00\x00', // stop learning the vibration profile

 'clearalarm': '\xF7\x10\x02\xBC\x00\x01\x02\x00\x01' // clear alarms

};

function modbusSend(cmd_str) {

 let crc = SQ.crc(cmd_str);

 let crc_str = SQ.encode(crc, -SQ.U16);

 let modbus_str = cmd_str + crc_str;

 SERIAL.write(1, modbus_str, modbus_str.length, SERIAL.LOOPBACK);

}

function nextRead(next_cmd, delay_ms) {

 // Pass index to the timer function as the userdata parameter

 Timer.set(delay_ms, 0, function(next_cmd) {

 modbusSend(next_cmd);

 }, next_cmd);

}

// This callback fires when a valid Modbus request or response is detected (depending on the mode)// The CRC,

function code and length are used to check the message is valid

// slave_addr: (int) the slave address

// func: (int) the function code

// reg_addr: (int) the register address

// data_len: (int) the length of the register data in bytes

// data: (void*) the register data from the request or response

function modparse_cb(slave_addr, func, reg_addr, data_len, data) {

 let s = '';

 if (data !== null) {

 s = mkstr(data, data_len);

 debug(JSON.stringify({addr: slave_addr, f: func, reg: reg_addr, l: data_len}));

 if (func === 16 && reg_addr === 0x02BE) { // start learning

 learnstate = 'Learning profile';

 command = '';

 nextRead(modbusCommand.value0, 400); // read first 64 registers of current value

 }

 else if (func === 16 && reg_addr === 0x02BF) { // stop learning

 learnstate = 'Learning complete';

 command = '';

 dispatchAlarmProfile = true; // get the learned profile on this cycle

 Document Number Revision Prepared By Approved By
 APN0037 1.0 NGB NB

 Title Page
 Connecting to a KPV200 Vibration Sensor 19 of 22

Copyright © 2023 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

 nextRead(modbusCommand.alarmstate, 400); // read first 64 registers of current value

 }

 else if (func === 16 && reg_addr === 0x02BC) { // clear alarm

 command = '';

 nextRead(modbusCommand.alarmstate, 400); // read first 64 registers of current value

 }

 else if (func === 4 && reg_addr === 0x80) { // alarm state

 SQ.dispatch(5,s);

 if (s === '\x01\x00') {alarmstate = 'Alarm';} else {alarmstate = 'Ok';}

 nextRead(modbusCommand.value0, 400); // read first 64 registers of current value

 }

 else if (func === 4 && reg_addr === 0x00) {

 vibration = [];

 for (let i = 0; i < 64; i++) {

 vibration[i] = data[i*2+1];

 }

 nextRead(modbusCommand.value1, 400); // read second 64 registers of current value

 }

 else if (func === 4 && reg_addr === 0x40) {

 for (let i = 0; i < 64; i++) {

 vibration[i+64] = data[i*2+1];

 }

 SQ.dispatch(1,JSON.stringify(vibration));

 if (dispatchAlarmProfile) {

 nextRead(modbusCommand.alarm0,400); // read first 64 registers of alarm value;

 }

 }

 else if (func === 3 && reg_addr === 0x80) {

 alarm = [];

 for (let i = 0; i < 64; i++) {

 alarm[i] = data[i*2+1];

 }

 nextRead(modbusCommand.alarm1,400); // read second 64 registers of alarm value;

 }

 else if (func === 3 && reg_addr === 0xC0) {

 for (let i = 0; i < 64; i++) {

 alarm[i+64] = data[i*2+1];

 }

 SQ.dispatch(2,JSON.stringify(alarm));

 }

 }

}

// Possible Modbus parsing modes:

// 0 = Disabled

// 1 = Callback triggers for all requests and responses

// 2 = Callback triggers for only requests

// 3 = Callback triggers for valid responses that complete a request (sniffer bus data)

let mode = 3;

let timeout_ms = 350;

let serial_ch = 1;

SERIAL.set_modparse(serial_ch, mode, modparse_cb, timeout_ms, null);

SQ.set_data_handler(function()

{

 if (command === 'startlearn'){

 modbusSend(modbusCommand.startlearn);

 }

 else if (command === 'stoplearn'){

 modbusSend(modbusCommand.stoplearn);

 }

 else if (command === 'clearalarm'){

 modbusSend(modbusCommand.clearalarm);

 }

 else {

 dispatchAlarmProfile = cycle % 10 === 0;

 Document Number Revision Prepared By Approved By
 APN0037 1.0 NGB NB

 Title Page
 Connecting to a KPV200 Vibration Sensor 20 of 22

Copyright © 2023 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

 modbusSend(modbusCommand.alarmstate);

 cycle++;

 }

 if (learnstate === 'Learning profile') {alarmstate = 'Monitoring off during learning';}

 SQ.dispatch(3,learnstate);

 SQ.dispatch(4,alarmstate);

}, null);

SQ.set_trigger_handler(function(tp) {

 if (tp === 1) { command = 'startlearn'; } // start learning

 if (tp === 2) { command = 'stoplearn'; } // stop learnig

 if (tp === 3) { command = 'clearalarm'; } // clear the alarm flag

 }, null);

 Document Number Revision Prepared By Approved By
 APN0037 1.0 NGB NB

 Title Page
 Connecting to a KPV200 Vibration Sensor 21 of 22

Copyright © 2023 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

9. Appendix II – KPV200 Register Description

 Document Number Revision Prepared By Approved By
 APN0037 1.0 NGB NB

 Title Page
 Connecting to a KPV200 Vibration Sensor 22 of 22

Copyright © 2023 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

