

 Document Number Revision Prepared By Approved By
 APN0030 1.0 NB TK

 Title Page

 Serial Device Interface Techniques 1 of 29

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

SERIAL DEVICE INTERFACE TECHNIQUES

1. Introduction
In some cases, in can be convenient to power external serial sensors from a Senquip device. This can be done by
connecting the serial device to the IO pins on a Senquip QUAD, or the Source pins on a Senquip ORB. Sampling of
serial data can become complicated where the external sensor has a significant boot time, or where it sends data
immediately after being powered. Where the sensor has a significant boot time, the Senquip device may have try to
sample serial data before the external device is ready. In the case of a sensor that sends data instantly when
powered, the serial data may have been sent before the Senquip device is ready to receive it.

This application note will look at five externally connected serial devices and will discuss how to control the power
and serial reads in each case.

1. Senquip device always on, powering external Modbus device.
2. Senquip device requests serial data from external serial device.
3. Senquip device waking periodically and powering external Modbus device with boot time.
4. Senquip device waking periodically and powering external Modbus device that requires Modbus write.
5. Senquip device waking periodically and taking multiple samples from a serial sensor.

The first two examples are simple, can be implemented using simple settings only and are shown only as an
introduction. The third example uses delayed serial reads but can also be implemented with settings only. The last 2
examples are more complex and will require a script. Where the Senquip device is waking periodically, it will be
assumed that the application is low power with the Senquip device running from AA batteries or Solar.

This application note assumes that the Senquip devices are running the following or newer firmware versions:

• Senquip ORB: SFW002-3.0.0

• Senquip QUAD: SFW003-4.0.0

Figure 1 - Extensometers from Osprey Measurement Systems are an Example of Serial Sensors with a Boot Time

 Document Number Revision Prepared By Approved By
 APN0030 1.0 NB TK

 Title Page

 Serial Device Interface Techniques 2 of 29

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

2. Connecting Serial Sensors to the Senquip Device
In this application note, we will assume that the external sensors are RS485, and that they are powered by Current
Loop 1 on the Senquip ORB and IO1 on the Senquip QUAD.

The following pins will be used on the Senquip ORB and QUAD devices.

Connection Senquip ORB Senquip QUAD

RS485 B Pin 6, B Pin 9, B

RS485 A Pin 7, A Pin 10, A

Power Pin 3, SRC1 Pin 3, IO1

GND Pin 4, GND Pin 8, GND

If the Senquip device and sensor are at the end of the line on the RS485 bus, then a 120ohm termination resistor
must be placed at each end of the line. The 120 ohm resistor on the Senquip device can be enabled as a setting.

2.1. Senquip ORB
With a Senquip ORB, the external serial device is powered by Current Loop 1. The current loops are powered by the
internal LiPo backup battery so that they can provide power when the external power supply is removed, for
instance at night in a solar application. An internal DCDC converter boosts the 3.7V LiPo voltage to 12V to power the
external sensor. The current loop voltage on the Senquip ORB is fixed at 12V.

Figure 2 - Senquip ORB Powering External Serial Sensor

 Document Number Revision Prepared By Approved By
 APN0030 1.0 NB TK

 Title Page

 Serial Device Interface Techniques 3 of 29

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

The basic settings for the serial device will remain the same for all examples:

Settings Value Comment
Interval 1 The serial port will be sampled on every base interval

Serial Type RS485

Termination Resistor Enabled Must be enabled at the ends of the twisted pair cable

Baud Rate 57600

Settings 8N1 8 data bits, no parity, 1 stop bit

The Mode will change depending on the application.

Figure 3 - Senquip ORB Serial Port Settings

2.2. Senquip QUAD

With a Senquip QUAD, external devices can be powered from any of the 5 IO. The IO can be configured to supply
the externally connected devices with the supply voltage (Vin), or and internally generated voltage that is boosted
from the internal LiPo backup battery (Vset). If Vset is chosen, then the external device can be powered when
supply to the Senquip QUAD is lost, for instance at night in a solar application. Vset can be configured between 5V
and 25V.

In our application, we will use Vset and will configure it as 12V. The rest of the IO settings will depend on the
application.

Figure 4 - Vset Configured to be 12V

 Document Number Revision Prepared By Approved By
 APN0030 1.0 NB TK

 Title Page

 Serial Device Interface Techniques 4 of 29

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Figure 5 - An Externally Connected Device can be Powered by Vin or Vset

Figure 6 - External Serial Device Powered by IO1

 Document Number Revision Prepared By Approved By
 APN0030 1.0 NB TK

 Title Page

 Serial Device Interface Techniques 5 of 29

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

3. Example 1: Senquip Device Always On, Powering External Modbus device.
This is the simplest of the examples as the external device is always powered, and so will be ready when the Senquip

device reads Modbus data.

In this example, the serial Mode is set as Modbus, and the following two floating point Modbus reads are defined:

Figure 7 - Modbus Settings for ORB and QUAD

In the serial settings, we set the Slave Timeout as 400msec. This is the time that the Senquip device will wait before

moving onto the next measurement. We set the Delay Between Reads as 15 msec. This is the time that the Senquip

device will wait after having received a response from the slave before it sends the next request. Although the

Modbus standard sets the minimum as 3.5 character periods, we find that many Modbus sensors need a longer time

between reads.

For the ORB, Current Loop 1 is configured for current measurement, and is set as always on.

Figure 8 - Senquip ORB Current Loop 1 Settings

For the Senquip QUAD, IO1 is configured to supply Vset as default with no change during a measurement cycle. No

measurements are set, although in a real application, voltage can be used to confirm the supply to the serial device

is ok, and the current drawn by the serial device may provide a useful diagnostic.

 Document Number Revision Prepared By Approved By
 APN0030 1.0 NB TK

 Title Page

 Serial Device Interface Techniques 6 of 29

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Figure 9 - Senquip QUAD IO settings

A base interval of 5 seconds is selected for both the Senquip ORB and QUAD.

A Modbus slave simulator from ModbusTool is used to simulate an externally attached inclinometer. In Figure 10, we
can see that the serial settings have been set to match those of the Senquip device, and that a slave with address 30
and two floating point registers at addresses 48 and 50 have been created. The software is set to delay 100msec
before responding to a Modbus read request. This is significantly smaller than the 400 sec Slave Timeout set on the
Senquip device.

Figure 10 - Modbus Slave Simulator Settings

https://github.com/ClassicDIY/ModbusTool

 Document Number Revision Prepared By Approved By
 APN0030 1.0 NB TK

 Title Page

 Serial Device Interface Techniques 7 of 29

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

The Modbus data is being correctly displayed on the Senquip Portal.

Looking at a trace of the Modbus comms on the Senquip QUAD, we can see the following:

1. The first Modbus read of register 48,
2. The first response from the external sensor approx. 150msec later. We found that the 100msec delay in the

simulator software was not very accurate and varied between reads,
3. The second Modbus read of register 15 msec after the response, as set in Delay Between Reads,
4. The second Modbus response from the sensor,
5. The always on 12V from IO1.

Figure 11 - Oscilloscope Trace Showing Modbus Read Timing

The RS485 data is noisy between reads as the line is high impedance and is only loosely referenced to ground. The
same noise will be present on the A and B line and will cancel when the 2 signals are subtracted at the RS485 driver

1

2

3

4

 1

5

 1

 Document Number Revision Prepared By Approved By
 APN0030 1.0 NB TK

 Title Page

 Serial Device Interface Techniques 8 of 29

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Figure 12 shows Figure 12 RS485 data zoomed in to show the first few bytes of the first Modbus read. The figure
shows:

1. Noisy RS485 A signal,
2. Noisy RS485 B signal,
3. Cleaned up A-B signal,
4. The decoded Rs485 signal showing 0x1E and 0x03, which represent the address of the device to be read (30

decimal) and the function code (3) for read a holding register.

For more information on Modbus, see APN0020 - Writing to Modbus Devices.

Figure 12 - RS485 Signals Showing A, B and Decoded Data

We have demonstrated how a Senquip device can power an external sensor and read Modbus data from that sensor

in a powered, “always on” application.

4. Example 2: Senquip Device Requests Serial Data from External Serial Device.
In this example, we will assume that an engine controller used in a lighting tower is connected to a Senquip device.

The engine controller sends serial data in response to a request.

• equest: “CST:”

• esponse: “CST:2024-02-12-MON-04:08,M,RUN,1783,9124.8,43,13.7,ON,No Action in Man\x0A”

1

2

 1

3

 1

4

 1

https://docs.senquip.com/app_notes/APN0020%20Rev%201.0%20-%20Writing%20to%20Modbus%20Devices.pdf

 Document Number Revision Prepared By Approved By
 APN0030 1.0 NB TK

 Title Page

 Serial Device Interface Techniques 9 of 29

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

The serial string response contains the following information separated by commas. The data could easily be parsed
using a simple script.

Parameter Value
Start of Message CST:

Time and Date 2024-02-12-MON-04:08
Engine Controller Mode Manual (M)

Engine State Run

Engine Speed 1783 RPM

Fuel Level 43%

Battery Voltage 13.7V

Light Status On

End of Message Line Feed (0x0A)

Figure 13 - Typical Lighting Tower with Serial Communications

In this example, the serial port mode is changed to RS232 to match that of the lighting tower engine controller. The
same IO1 and Current Loop 1 pin configuration as example 1 are used.

 Document Number Revision Prepared By Approved By
 APN0030 1.0 NB TK

 Title Page

 Serial Device Interface Techniques 10 of 29

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

This time, the serial port is configured as RS232 Capture. In capture mode, the Senquip device serial port will capture
everything that arrives on the serial port. To make the data meaningful, a Start String can be specified. Data will
only be captured after the start string arrives. Start strings can be useful in correctly aligning data as it arrives. In this
example, the string starts with “CST” and so this has been used as the Start String. A Stop String is also specified.
Data capture will end when the stop string is detected. In this example, the message ends with a carriage return and
so 0x0A (ASCII for LF) has been used as the Stop String.

A Request String can be used where the externally connected serial device requires a prompt to return data. The
lighting tower engine controller responds to “CST:” and so this has been used as the Request String.

Figure 14 - Serial Port Settings

The serial data is arriving correctly on the Senquip Portal.

 Document Number Revision Prepared By Approved By
 APN0030 1.0 NB TK

 Title Page

 Serial Device Interface Techniques 11 of 29

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Figure 15 - Serial Data Arriving on the Senquip Portal

Looking at the serial data, we see the following:

1. The serial request string is sent by the Senquip device,
2. The response from the lighting tower controller follows shortly.

Figure 16 - Request String and Response

Zooming in on the data transmitted by the Senquip device, we see the request string “CST:”

1

2

 1

 Document Number Revision Prepared By Approved By
 APN0030 1.0 NB TK

 Title Page

 Serial Device Interface Techniques 12 of 29

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Figure 17 - Request String Decoded

We have demonstrated how a Senquip device can wake periodically and poll an external device to request serial
data.

5. Example 3: Waking Periodically and Powering External Modbus Device with Boot Time.
In this example, we assume that the Senquip device is running on AA batteries or solar and so we will configure it for
low power. The Senquip device will be off for most of the time, and will wake, power the connected Modbus slave,
read data and then return to sleep. The connected sensor requires 5 seconds to boot and so the Modbus reads must
be delayed for at least 5 seconds.

The General settings of the Senquip device need to be configured for low power, and for operation with AA or Solar.
Firstly, the Base Interval is set to 1 hour and the transmit interval to 6 so that measurements are taken hourly and
sent every 6 hours. Batch Transmit is enabled so that all 6 measurements are sent on transmit, rather than just the
latest. Hibernate is turned off as there is no external power and we do not want the device entering hibernate mode,
which is a higher power mode than sleep. For the Senquip ORB, an AA battery alert is enabled at 5.5V.

Other changes made are to turn off GPS, and all other unused peripherals. Also, avoid the use of HTTP endpoints
that take longer to complete transmission than MQTT endpoints.

 Document Number Revision Prepared By Approved By
 APN0030 1.0 NB TK

 Title Page

 Serial Device Interface Techniques 13 of 29

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Figure 18 - General Settings for Low Power

The serial is reconfigured for Modbus and the same 2 reads are configured as in Example 1. A new setting, Powered
by Output 1, available on SFW002-3.0.0 and SFW003-4.0.0 and later variants allows the read of serial data to be
delayed by the measurement time associated with IO1 on the Senquip QUAD or Current Loop 1 on the Senquip ORB.
The sensor connected to IO1 or Current Loop 1 will be powered during this time. This allows for external serial
sensors to boot before being read.

 Document Number Revision Prepared By Approved By
 APN0030 1.0 NB TK

 Title Page

 Serial Device Interface Techniques 14 of 29

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Figure 19 - Serial Port Settings Including New Link to IO Function

IO1 on a Senquip QUAD is configured as normally off. During a measurement cycle, it boosts the LiPo backup battery

voltage to 12V (as configured by VSET Voltage), and after measurement, returns to the default of off. Our sensor has

a boot time of 5 seconds and so we will set the IO1 Measurement Time to 5 seconds. Because the serial port is now

linked to IO1, the Modbus reads will be delayed by 5 seconds.

 Document Number Revision Prepared By Approved By
 APN0030 1.0 NB TK

 Title Page

 Serial Device Interface Techniques 15 of 29

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Figure 20 - Senquip QUAD IO1 Settings

If using a Senquip ORB, configure Current Loop 1 with a 5 second Start Time.

Figure 21 - Senquip ORB Current Loop 1 Settings

 Document Number Revision Prepared By Approved By
 APN0030 1.0 NB TK

 Title Page

 Serial Device Interface Techniques 16 of 29

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

In Figure 22, which shows the timing of a delayed Modbus read, we see the following:

1. Before a measurement cycle, there is no power on IO1,
2. At the start of a measurement cycle, 12V is applied to IO1,
3. The first Modbus read is executed exactly 5 seconds after power is applied to the sensor,
4. The sensor replies to the read command,
5. The Senquip device performs the second read 15 msec after receiving the first reply,
6. The sensor responds to the second read,
7. Power is removed from IO1 only when Modbus measurements are complete,
8. Power remains off till the next measurement cycle.

Figure 22 - Delayed Modbus Read

We have demonstrated that a Senquip device can wake periodically, power an external Modbus slave, and delay
measurement until the slave device has booted.

6. Example 4: Waking Periodically and Powering Device that Requires Modbus Write.
In this application, we assume that the externally connected Modbus slave requires a 3 second boot time after which
the Senquip device must perform a Modbus write to the slave to start a measurement. One second after sending

2

3

 1

4,5

 1 6

 1

7

 1

8

 1

1

 Document Number Revision Prepared By Approved By
 APN0030 1.0 NB TK

 Title Page

 Serial Device Interface Techniques 17 of 29

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

the Modbus write command, we can perform our Modbus reads. We will again assume this is a low power
implementation where the Senquip device will wake from sleep, take a sample, and return to sleep to save power.

For more information on writing to Modbus slave devices, see APN0020, Writing to Modbus Devices.

Figure 23 - Sensor Read Timing

In this application, we will use the device settings to apply power to the Modbus slave, and perform the Modbus
reads. We will use a script to wait the boot period and then send the Modbus write command. Figure 24 shows how
the script starts running at approximately the same time that the device boots and applies power to the sensor. The
script is then set to execute a Modbus write after 3 seconds, allowing a further second before the Modbus reads are
initiated by the Senquip device.

Figure 24 - Relative Timing of Device and Script

We will use the same general and serial port settings as Example 3, including the use of the new Powered by Output
1 setting, except that we will only define a single Modbus read. We will set the Measurement Time on IO 1 to 4
seconds to allow the 3 seconds for boot and an extra second between writing to the Modbus and reading the
response.

Measurement
cycle starts

Power Modbus
slave

Wait 3 seconds
Initiate

measurement
Wait 1 second Modbus reads Return to sleep

https://senquip.sharepoint.com/sites/Vault/Shared%20Documents/APN%20-Application%20Notes/docs.senquip.com/app_notes/APN0020+Rev+1.1+-+Writing+to+Modbus+Devices.pdf

 Document Number Revision Prepared By Approved By
 APN0030 1.0 NB TK

 Title Page

 Serial Device Interface Techniques 18 of 29

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Figure 25 - IO1 Settings with Extended Measurement Time

We will now write a script to send a Modbus write at the 3 second mark. The external sensor has address 30, and
requires a write of value 16 to register number 60.

The script starts by loading the required library files. It then defines a function that receives address, register and
value, and executes a Modbus write. The details of this function are described in APN0020, Writing to Modbus
Devices.

A timer is started that, when it expires after 3 seconds, calls the sendVal function to perform a Modbus write with

the required address, register, and value.

https://senquip.sharepoint.com/sites/Vault/Shared%20Documents/APN%20-Application%20Notes/docs.senquip.com/app_notes/APN0020+Rev+1.1+-+Writing+to+Modbus+Devices.pdf
https://senquip.sharepoint.com/sites/Vault/Shared%20Documents/APN%20-Application%20Notes/docs.senquip.com/app_notes/APN0020+Rev+1.1+-+Writing+to+Modbus+Devices.pdf

 Document Number Revision Prepared By Approved By
 APN0030 1.0 NB TK

 Title Page

 Serial Device Interface Techniques 19 of 29

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Figure 26 shows the timing of the Modbus write and read. In the figure, we can see that:

1. Before a measurement cycle, there is no power on IO1,
2. At the start of a measurement cycle, 12V is applied to IO1,
3. A Modbus write is executed approximately 3 seconds after power is applied,
4. The sensor responds to the write,
5. One second later, the Modbus read is executed,
6. The sensor replies to the read command,
7. Power is removed from IO1 only when Modbus measurements are complete,
8. Power remains off till the next measurement cycle.

 Document Number Revision Prepared By Approved By
 APN0030 1.0 NB TK

 Title Page

 Serial Device Interface Techniques 20 of 29

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Figure 26 - Timing of Modbus Write and Read

6.1. Writing to Multiple Sensors
An extension to this example would be a string of Modbus sensors that each require a write to start a measurement.

An example would be the Osprey IPX in-place extensometer where each of the Modbus elements require a write of

value 55 to register 99 to initiate a measurement. The writes need to be spaced by at least 200msec to allow each

sensor to respond.

2

3

 1

4

 1

1

5

 1

7

 1

6

 1

8

 1

7

 1

https://ospreymeasurement.systems/products/ipx/

 Document Number Revision Prepared By Approved By
 APN0030 1.0 NB TK

 Title Page

 Serial Device Interface Techniques 21 of 29

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Figure 27 - Osprey IPX Extensometer

In the script below, the same Modbus write function is used, but this time it is called multiple times, staring with

Modbus address 1 and ending when all the slave devices have been written. The number of slave devices is read

from a custom variable to allow simple setup of strings of devices with different numbers of sensors.

The script starts by initialising a variable, writeAddr, to the fist Modbus address, 1 in this case, and loading the chans

variable with the number of elements in the string. We then declare a function writeNext that executes a Modbus

write, increments the address counter and if there are still more sensors to write to, sets a 200msec timer which

when it expires, calls itself. The process continues until all the sensors have been written to.

To initiate the process, and to allow the string of sensors time to boot, a timer with a 3 second expiration is set to

call the first instance of writeNext.

The corresponding Modbus reads are configured in the Modbus settings.

The script is available in Appendix A.

 Document Number Revision Prepared By Approved By
 APN0030 1.0 NB TK

 Title Page

 Serial Device Interface Techniques 22 of 29

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Figure 28 - Modbus Writes of Multiple Modbus Sensors

We have demonstrated that a simple script in conjunction with settlings can allow a delayed write and subsequent
read of a single and multiple Modbus slave sensors.

 Document Number Revision Prepared By Approved By
 APN0030 1.0 NB TK

 Title Page

 Serial Device Interface Techniques 23 of 29

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

7. Example 5: Senquip Device Waking Periodically and Taking Multiple Samples
In this application, an external RS232 sensor sends a single measurement every time it is powered. We would like to

wake periodically and take 3 readings from the sensor to form an average, before returning to sleep. If the sensor

were a Modbus device, we would simply schedule 3 Modbus reads from the same register. This sensor, however,

only sends ASCII data when powered, and only sends data once before returning to sleep.

A script will be written to control the power to the sensor, and the serial port will be set to capture the serial data as

it arrives. The script is available in Appendix B.

Figure 29 - Sensor Power Timing

The serial port on an ORB is configured in capture mode, with a Max Time of 5 seconds. The capture time servers

the dual function of listening for serial data for 5 seconds to capture all three sensor transmissions, and also to hold

the Senquip device on while the script is scheduling timers that otherwise might timeout after the device has

returned to sleep. Since we know that the serial data starts with “$”, we have set a Start String to match.

Current Loop 1 is disabled in the settings as it will be under script control.

 Document Number Revision Prepared By Approved By
 APN0030 1.0 NB TK

 Title Page

 Serial Device Interface Techniques 24 of 29

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Figure s - Senquip ORB Serial Settings

The script will create 3 power pulses to force the serial sensor to send three measurements. A delay between the

start of the script and the power cycles will ensure that the serial port is ready to capture data.

The script starts by including the required libraries. It then declares the interval between power cycles, the length

for which the sensor will be powered down, the number of reads to be executed, and a temporary variable to hold

the current power cycle number.

 Document Number Revision Prepared By Approved By
 APN0030 1.0 NB TK

 Title Page

 Serial Device Interface Techniques 25 of 29

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

A function, nextRead, is then declared, that when called, will turn Current Loop 1 on and will set a timer for 800

msec later to turn the current loop off. If there are still more pulses to create, the function calls itself again. In

simple terms, the function sets up a number of timers that set the on and off edges of the pulses to be generated.

It should be noted that the actual timeout of timers generated in scripts may slightly longer than that requested if

the processor is busy with a high priority task when the timer expires.

The function nextRead is called after a delay of 1 second to allow time for the serial port to be initialised. The data

handler in this case does nothing, but in a real application would be where the serial message is parsed, and the

average generated.

Figure 30 shows the pulse and serial timing. Note that the off times are slightly different from each other. This will

be because the timer interrupts would not have been able to be serviced immediately when the timers expired as

the process was busy performing high priority tasks. In the figure, we can see:

1. A small change in the serial level; this may be the Senquip device initialising the serial port ,
2. The start of pulse 1, which is approximately 800msec wide,
3. Serial message 1 arriving,
4. The start of pulse 2,
5. Serial message 2 arriving,
6. The start of pulse 3,
7. Serial message 3 arriving,
8. End of power cycles.

 Document Number Revision Prepared By Approved By
 APN0030 1.0 NB TK

 Title Page

 Serial Device Interface Techniques 26 of 29

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Figure 30 - Pulse and Serial Timing

Figure 31 shows that the Senquip ORB has captured three serial messages that will be simple to parse in the script,
using the built in parse function.

Figure 31 - Serial Data Captured by Senquip ORB

We have demonstrated that a simple script in conjunction with settlings can allow a connected sensor to powered in
a complex way.

2

3

 1

4

 1

1

5

 1

7

 1

6

 1

8

 1

 Document Number Revision Prepared By Approved By
 APN0030 1.0 NB TK

 Title Page

 Serial Device Interface Techniques 27 of 29

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

8. Conclusions
Serial devices with diverse power and timing needs can be accommodated using a combination of settings and
scripts.

The user needs to be aware that timer timeouts are not always precise, and expiration can be delayed if the
processor is completing high priority tasks.

An oscilloscope will be of immense help when writing and debugging sensors with unusual power and timing
requirements.

 Document Number Revision Prepared By Approved By
 APN0030 1.0 NB TK

 Title Page

 Serial Device Interface Techniques 28 of 29

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

9. Appendix A – Multiple Delayed Modbus Write

load('senquip.js');

load('api_timer.js');

load('api_serial.js');

load('api_config.js');

load('api_sys.js');

let writeAddr = 1; // first modbus sensor address is 1

let chans = Cfg.get('script.num1'); // get the number of sensors from a custom variable

function sendVal(sendObj){

 let s = SQ.encode(sendObj.sadr,SQ.U8); // encode dec address into hex

 let r = SQ.encode(sendObj.radr,SQ.U16); // encode dec register number into hex

 let v = SQ.encode(sendObj.val,SQ.U16); // encode dec data into hex

 let a = s+'\x06'+r+v; // 6 is the MODBUS write unsigned 16 function code

 let c = SQ.crc(a); // use the Senquip CRC function to calculate the Modbus CRC

 c = SQ.encode(c, -SQ.U16); // encode the CRC function in hex + flip byte order

 let t = a+c; // create the final Modbus write message

 SERIAL.write(1,t,t.length,SERIAL.IMMEDIATE); // send the message to serial port 1

}

function writeNext(){ // write to the next Modbus sensor

 sendVal({sadr:writeAddr, radr:99, val:55});

 writeAddr++;

 if(writeAddr <= chans){ // check if there are more sensors to write to

 Timer.set(200, 0, function() { // set a timer with a 200msec timeout

 writeNext();

 }, null);

 }

}

Timer.set(3000, 0, function() { // initiate the first write after 3 sec

 writeNext();

 }, null);

SQ.set_data_handler(function(data) { // nothing to do in the data handler

}, null);

 Document Number Revision Prepared By Approved By
 APN0030 1.0 NB TK

 Title Page

 Serial Device Interface Techniques 29 of 29

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

10. Appendix B - Senquip Device Waking Periodically and Taking Multiple Samples

load('senquip.js');

load('api_timer.js');

let interval = 1000; // msec - time between reads

let offdelay = 200; // msec - power down time

let reads = 3; // number of reads to perform

let count = 1; // current read no

function nextRead(){

 SQ.set_current(1, SQ.ON); // sensor powered up

 Timer.set(interval-offdelay, 0, function() {SQ.set_current(1, SQ.OFF);}, null);//

power down sensor

 count++;

 if (count <= reads){

 Timer.set(interval, 0, function() {nextRead();}, null);

 }

}

Timer.set(1000, 0, function() {nextRead();}, null);

SQ.set_data_handler(function(data) {

 // Parse serial data here

}, null);

