

 Document Number Revision Prepared By Approved By
 APN0035 1.0 NGB NB

 Title Page

 Reading OBD Data from a Light Vehicle 1 of 9

Copyright © 2023 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

READING OBD DATA FROM A LIGHT VEHICLE

1. Introduction

On-board diagnostics (OBD) is a term referring to a vehicle's self-diagnostic and reporting capability. In most
countries, this capability is a requirement to comply with emissions standards and to detect failures that may
increase the vehicle tailpipe emissions.

OBD systems give the repair technician access to the status of the various vehicle sub-systems. Modern OBD-II
implementations typically use a standardised CAN Bus communications port to provide real-time data and diagnostic
trouble codes which allow malfunctions within the vehicle to be rapidly identified.

This application note describes how to retrieve standard OBD information from a light vehicle that complies with the
OBD-II standard. For heavy vehicles, see the Senquip application notes on J1939.

Further details on the Senquip scripting language can be found in the Device Scripting Guide.

2. OBD-II Introduction

OBD-II is an improvement over OBD-I in both capability and standardisation. The OBD-II standard specifies the type
of diagnostic connector and its pinout, the electrical signalling protocols available, and the messaging format. It also
provides a candidate list of vehicle parameters to monitor along with how to encode the data for each.

As shown in Figure 1, you can determine whether your car has OBD-II by knowing where and when it was purchased.

Figure 1 - Introduction of OBD-II

2.1. Physical Interface

While the location of the OBD-II port is not standardised, there are some common places where they are found:

• Beneath the steering column. Depending on the car model, the OBD port may be to the left, in the middle, or to the

right of the underside of the steering wheel.

• To the left or right of the car’s dashboard. You’ll usually find it closer to the dashboard, a bit further away from the rest

of the wheel.

https://docs.senquip.com/scripting_guide/

 Document Number Revision Prepared By Approved By
 APN0035 1.0 NGB NB

 Title Page

 Reading OBD Data from a Light Vehicle 2 of 9

Copyright © 2023 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

• Between the transmission and cup holder. Usually located near the bottom of the transmission or cup holder.

• Near the music or navigation system. Sometimes, the OBD port may be placed somewhere next to the music or

navigation system.
• Beneath the glove compartment. In some cases, the port may be placed on the passenger’s side, placed beneath the

glove compartment.

Figure 2 - Typical OBD-II Socket Location

The OBD-II specification provides for a standardised hardware interface, the female 16-pin (2x8) J1962 connector,
where type A is used for 12-volt vehicles and type B for 24-volt vehicles. Type A and B connectors are the same
except type B connectors have the centre groove split in two.

Figure 3 - Female Type A Connector (left) and Female Type B Connector (right)

The pinout from type A and B are the same and are shown below. Since 2008, CAN bus (ISO 15765) has been the

mandatory protocol for OBD-II in all cars sold in the US and since then, most of the rest of the world. In this

application note, we will focus on extracting data from the vehicle using the CAN Bus on pins 6 and 14.

Pin Description Pin Description

1 Manufacturer Discretionary 9 Manufacturer Discretionary

2 SAE J1850 Bus + (VPW / PWM) 10 SAE J1850 Bus - (PWM-only)

3 Manufacturer Discretionary 11 Manufacturer Discretionary

4 Chassis Ground 12 Manufacturer Discretionary

5 Signal Ground 13 Manufacturer Discretionary

6 CAN High (ISO 15765-4 and SAE J2284) 14 CAN Low (ISO 15765-4 and SAE J2284)

7 ISO 9141-2 / ISO 14230-4 K Line 15 ISO 9141-2 / ISO 14230-4 L Line (Optional)

8 Manufacturer Discretionary 16 Vehicle Battery Power: Type A 12V/4A, Type B 24V/2A

 Document Number Revision Prepared By Approved By
 APN0035 1.0 NGB NB

 Title Page

 Reading OBD Data from a Light Vehicle 3 of 9

Copyright © 2023 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

2.2. OBD-II Protocol
SAE standard J1979 defines the OBD-II protocol and defines a range of standard Parameter IDs (PIDs) that can be

logged across most cars. This means that you can easily get human-readable OBD-II data from your car on speed,

RPM, throttle position and more. Manufacturers also define additional PIDs specific to their vehicles; these are more

complex to decode. A list of standard PIDs can be found here.

OBD-II Modes

There are 10 diagnostic services, or modes, described in the latest OBD-II standard. These modes are provided by
the ECM to allow functions such as clearing diagnostic codes or monitoring live data. Manufacturers are not required
to support all modes and they are allowed to create additional modes if required.

Mode (hex) Description

01 Show current data

02 Show freeze frame data

03 Show stored Diagnostic Trouble Codes

04 Clear Diagnostic Trouble Codes and stored values

05 Test results, oxygen sensor monitoring (non CAN only)

06 Test results, other component/system monitoring (Test results, oxygen sensor monitoring for CAN only)

07 Show pending Diagnostic Trouble Codes (detected during current or last driving cycle)
08 Control operation of on-board component/system

09 Request vehicle information

0A Permanent Diagnostic Trouble Codes (DTCs) (Cleared DTCs)

When a request is made using a mode, the response will contain the mode with 0x40 added. So for instance if a

mode 0x01 PID is requested, the response mode will be 0x41.

This application note will focus on the request of current data, mode 1.

OBD-II Parameter IDs (PID)

Each mode has associated PIDs used to request specific data. For instance, to request engine speed using mode 1

(show current data), PID 0x0C (engine speed) is used. The table below shows a few common PIDs and how to

decode the data that is returned when they are requested. A full set of service mode 1 PIDs is given in Appendix 1.

PID (hex) PID (dec)
No. bytes
returned

Description Min Max Unit Formula

04 4 1 Calculated engine load 0 100 % A/2.55

05 5 1 Engine coolant temperature -40 215 °C A-40

0C 12 2 Engine speed 0 16,383.75 rpm (256*A + B)/4

0D 13 1 Vehicle speed 0 255 km/h A

Figure 4- Example PID Decriptions

The references A, B, C, D in the formula table are byte positions in the returned data. Note for instance that engine

load return as single byte and so only A is used in the formula, whereas engine speed returns 2 bytes and so A and B

are used in the formula to calculate speed.

https://en.wikipedia.org/wiki/OBD-II_PIDs

 Document Number Revision Prepared By Approved By
 APN0035 1.0 NGB NB

 Title Page

 Reading OBD Data from a Light Vehicle 4 of 9

Copyright © 2023 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

The first byte to be returned is A, followed by B, C, and D. When referring to bits in each byte, quantities like C4

means bit 4 from data byte C. Each bit is numbered from 0 to 7, with 7 being the most significant bit and 0 is the

least significant bit.

A B C D

A7 A6 A5 A4 A3 A2 A1 A0 B7 B6 B5 B4 B3 B2 B1 B0 C7 C6 C5 C4 C3 C2 C1 C0 D7 D6 D5 D4 D3 D2 D1 D0

OBD-II Frame Details

OBD uses standard format CAN where the ID has 11 bits. This in contrast with heavy vehicle J1939 that uses the 29

bit extended format. CAN bit rates are typically 500bps in light vehicles, with 250kbps being seen in some vans and

other larger vehicles.

A standard OBD frame consists of an identifier and CAN data. When requesting PIDs, the broadcast identifier 0x7DF

is used. The ECU will reply with an identifier in the range 0x7E8 to 0x7EF. Note that 0x7E8 typically be where the

main engine or ECU responds at.

Request Identifier: 0x7DF
Response Identifier: 0x7E8 to 0x7EF

The CAN data field consists of a message length, mode, PID, and data fields. The length field reflects the length in
number of bytes of the remaining data. For the vehicle speed request shown below, identifier is 0x7DF which is the
standard request identifier. The data field contains length of 2 as only mode and PID bytes follow. Mode 1 request
messages always have length 2.

The vehicle speed response comes from the ECU with identifier 0x7E8. Length is 3 because the data bytes contain
the mode, PID, and 1 data byte for speed (see Figure 4).

Vehicle speed is contained in byte A, in km/h or 0x1F = 31km/h.

Looking at a similar example for requesting engine speed, the request message is:

Again, the engine speed response comes from the ECU with identifier 0x7E8. Length is 4 this time because the
engine speed PID returns 2 bytes in addition to the mode and PID bytes.

 Identifier Data Bytes

 Request length mode PID unused

Example 0x7DF 0x02 0x01 0x0D X X X X X
Figure 5 - Vehicle Speed Request Message

 Identifier Data Bytes

 Response length Mode PID A B C D unused

Example 0x7E8 0x03 0x41 0x0D 0x1F X X X X
Figure 6 - Vehicle Speed Response Message

 Identifier Data Bytes

 Request length mode PID unused
Example 0x7DF 0x02 0x01 0x0C X X X X X

Figure 7 - Engine Speed Request Message

 Document Number Revision Prepared By Approved By
 APN0035 1.0 NGB NB

 Title Page

 Reading OBD Data from a Light Vehicle 5 of 9

Copyright © 2023 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Engine speed (from Figure 4) is contained in bytes A and B, in RPM with the formula (256*A + B)/4 being applied.
Engine speed = 0x0C36/4 = 781.5RPM.

3. Senquip Device Connection
The Senquip device can be powered from the OBD-II connector and extracts data using the CAN peripheral. In the

example below, a Senquip ORB is connected to a male OBD-II type A plug.

Figure 9 - Typical Senquip ORB OBD-II Connection

The Senquip ORB is configured with a base interval of 10 seconds. The CAN peripheral is set to be samples on each

base interval and is configured for a baud rate of 500bps. The capture time is set as the same at the base interval to

ensure that all CAN messages are captured. Because we are going to be requesting CAN data, transmitting on the

bus is enabled. A CAN filter is specified so that only messages from the allowed response identifiers 0x7E8 to 0x7EF

are received. Without the filter, hundreds of manufacturer specific messages are received. After an initial test, it was

noticed that all responses were coming from 0x7E8 and 0x7E9 and so the filter was changed to allow 10 messages

from each of these 2 addresses. The final filter is: 7E0, 7E1, 7E2, 7E3, 7E4, 7E5, 7E6, 7E7, 7E8*10, 7E9*10, 7EA, 7EB,

7EC, 7ED, 7EE, 7EF. The raw CAN messages are sent back to the Senquip Portal for debugging purposes. The raw

data option will be turned off later to reduce data throughput.

 T

 se

T

 Identifier Data Bytes

 Response length mode PID A B C D unused

Example 0x7E8 0x03 0x41 0x0C 0x0C 0x36 X X X
Figure 8 - Engine Speed Response

 Document Number Revision Prepared By Approved By
 APN0035 1.0 NGB NB

 Title Page

 Reading OBD Data from a Light Vehicle 6 of 9

Copyright © 2023 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Figure 10 - Senquip ORB CAN Peripheral Settings.

4. Requesting PIDs in a Script
A script will be written to request the following PIDs at a 5 second interval:

• 0x0C: Engine speed

• 0x0D: Vehicle speed

• 0x04: Engine load

• 0x05: Coolant temperature

• 0x11: Throttle position

• 0x1F: Run time since start

• 0x2F: Fuel level

• 0xA6: Odometer

Required libraries are included and a function is written to extract the PID from a CAN message. PID request
messages are sent using the repeat send function.

load('senquip.js');
load('api_timer.js');

function pid(data) {return(data.slice(4,6));}

//request messages

 CAN.tx(1, 0x7DF, "\x02\x01\x0C\xCC\xCC\xCC\xCC\xCC", 8, CAN.STD + CAN.TX_SLOT(0), 3000); // request engine rpm
 CAN.tx(1, 0x7DF, "\x02\x01\x0D\xCC\xCC\xCC\xCC\xCC", 8, CAN.STD + CAN.TX_SLOT(1), 3100); // request vehicle speed

 CAN.tx(1, 0x7DF, "\x02\x01\x04\xCC\xCC\xCC\xCC\xCC", 8, CAN.STD + CAN.TX_SLOT(2), 3200); // request engine load
 CAN.tx(1, 0x7DF, "\x02\x01\x05\xCC\xCC\xCC\xCC\xCC", 8, CAN.STD + CAN.TX_SLOT(3), 3300); // request engine coolant temp
 CAN.tx(1, 0x7DF, "\x02\x01\x11\xCC\xCC\xCC\xCC\xCC", 8, CAN.STD + CAN.TX_SLOT(4), 3400); // throttle position

 CAN.tx(1, 0x7DF, "\x02\x01\x1F\xCC\xCC\xCC\xCC\xCC", 8, CAN.STD + CAN.TX_SLOT(5), 3500); // run since start
 CAN.tx(1, 0x7DF, "\x02\x01\x2F\xCC\xCC\xCC\xCC\xCC", 8, CAN.STD + CAN.TX_SLOT(6), 3600); // fuel level

 Document Number Revision Prepared By Approved By
 APN0035 1.0 NGB NB

 Title Page

 Reading OBD Data from a Light Vehicle 7 of 9

Copyright © 2023 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Figure 11 shows a typical scan of the CAN Bus as shown in Senquip Portal in the raw data widget. In the messages,

see that the responding address is 0x7E8 for all messages. The 1st byte tells us how many of the subsequent bytes

are valid data. The 2nd byte contains the response to a mode 1 request, 0x41. The 3rd byte is the PID, and the

subsequent valid bytes are data.

Figure 11 - OBD-II Response to Mode 1 Request

In the data handler, we loop through all the received CAN messages, checking if the identifier is that of the ECU. If

so, we check the PID and apply the corresponding formula to extract the required parameter. Each parameter is

dispatched to the Senquip Portal.

The script has been tested on the following vehicles:

• Toyota Camry

• Toyota Prado

• Mitsubishi Pajero

In some cases, the ECU will not respond to a request message. In the case of the fuel level request message, this
could for instance, be because the fuel sender is mechanical and is not available on the CAN network.

 Document Number Revision Prepared By Approved By
 APN0035 1.0 NGB NB

 Title Page

 Reading OBD Data from a Light Vehicle 8 of 9

Copyright © 2023 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Although this application note has dealt with standard PIDs, most of all OBD-II PIDs in use are non-standard. For
most modern vehicles, there are many more functions supported on the OBD-II interface than are covered by the
standard PIDs, and there is relatively minor overlap between vehicle manufacturers for these non -standard PIDs.

5. Conclusions
On-board diagnostics (OBD) enables the reading of standard parameters from most vehicles over CAN Bus.

A simple script enables a Senquip device to request standard PIDs and to decode the responses.

Not all vehicles will respond to all PID requests. Additional information is available using non-standard PIDs.

SQ.set_data_handler(function(data) {

 let obj = JSON.parse(data);
 if (typeof obj.can1 !== "undefined") {

 for (let i = 0; i < obj.can1.length; i++) {
 if (obj.can1[i].id === 0x7E8 || obj.can1[i].id === 0x7E9){ // These are the ecu id's

 if (pid(obj.can1[i].data) === "0C"){ // engine speed
 let pid0c = SQ.parse(obj.can1[i].data, 6, 4, 16)*0.25;

 SQ.dispatch(1, pid0c);
 }
 else if (pid(obj.can1[i].data) === "0D"){ // vehicle speed

 let pid0d = SQ.parse(obj.can1[i].data, 6, 2, 16);
 SQ.dispatch(2, pid0d);
 }
 else if (pid(obj.can1[i].data) === "04"){ // engine load
 let pid04 = SQ.parse(obj.can1[i].data, 6, 2, 16)/2.55;
 SQ.dispatch(3, pid04);
 }
 else if (pid(obj.can1[i].data) === "05"){ // engine coolant temp
 let pid05 = SQ.parse(obj.can1[i].data, 6, 2, 16)-40;
 SQ.dispatch(4, pid05);

 }
 else if (pid(obj.can1[i].data) === "11"){ // throttle position
 let pid11 = SQ.parse(obj.can1[i].data, 6, 2, 16)/2.55;
 SQ.dispatch(5, pid11);
 }

 else if (pid(obj.can1[i].data) === "1F"){ // run since start
 let pid1f = SQ.parse(obj.can1[i].data, 6, 4, 16);
 SQ.dispatch(6, pid1f);

 }
 else if (pid(obj.can1[i].data) === "2F"){ // fuel level

 let pid2f = SQ.parse(obj.can1[i].data, 6, 2, 16)/2.55;
 SQ.dispatch(7, pid2f);
 }

 }
 }
}, null);

 Document Number Revision Prepared By Approved By
 APN0035 1.0 NGB NB

 Title Page

 Reading OBD Data from a Light Vehicle 9 of 9

Copyright © 2023 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

6. Appendix I – Example Script to Request PIDs

load('senquip.js');
load('api_timer.js');

function pid(data) {return(data.slice(4,6));}

//request messages
 CAN.tx(1, 0x7DF, "\x02\x01\x0C\xCC\xCC\xCC\xCC\xCC", 8, CAN.STD + CAN.TX_SLOT(0), 3000); // request engine rpm

 CAN.tx(1, 0x7DF, "\x02\x01\x0D\xCC\xCC\xCC\xCC\xCC", 8, CAN.STD + CAN.TX_SLOT(1), 3100); // request vehicle speed
 CAN.tx(1, 0x7DF, "\x02\x01\x04\xCC\xCC\xCC\xCC\xCC", 8, CAN.STD + CAN.TX_SLOT(2), 3200); // request engine load

 CAN.tx(1, 0x7DF, "\x02\x01\x05\xCC\xCC\xCC\xCC\xCC", 8, CAN.STD + CAN.TX_SLOT(3), 3300); // request engine coolant temp
 CAN.tx(1, 0x7DF, "\x02\x01\x11\xCC\xCC\xCC\xCC\xCC", 8, CAN.STD + CAN.TX_SLOT(4), 3400); // throttle position
 CAN.tx(1, 0x7DF, "\x02\x01\x1F\xCC\xCC\xCC\xCC\xCC", 8, CAN.STD + CAN.TX_SLOT(5), 3500); // run since start

 CAN.tx(1, 0x7DF, "\x02\x01\x2F\xCC\xCC\xCC\xCC\xCC", 8, CAN.STD + CAN.TX_SLOT(6), 3600); // fuel level

SQ.set_data_handler(function(data) {
 let obj = JSON.parse(data);
 if (typeof obj.can1 !== "undefined") {
 for (let i = 0; i < obj.can1.length; i++) {
 if (obj.can1[i].id === 0x7E8 || obj.can1[i].id === 0x7E9){ // These are the id's of the ecu

 if (pid(obj.can1[i].data) === "0C"){ // engine speed
 let pid0c = SQ.parse(obj.can1[i].data, 6, 4, 16)*0.25;
 SQ.dispatch(1, pid0c);
 }

 else if (pid(obj.can1[i].data) === "0D"){ // vehicle speed
 let pid0d = SQ.parse(obj.can1[i].data, 6, 2, 16);
 SQ.dispatch(2, pid0d);

 }
 else if (pid(obj.can1[i].data) === "04"){ // engine load
 let pid04 = SQ.parse(obj.can1[i].data, 6, 2, 16)/2.55;

 SQ.dispatch(3, pid04);
 }

 else if (pid(obj.can1[i].data) === "05"){ // engine coolant temp
 let pid05 = SQ.parse(obj.can1[i].data, 6, 2, 16)-40;
 SQ.dispatch(4, pid05);

 }
 else if (pid(obj.can1[i].data) === "11"){ // throttle position
 let pid11 = SQ.parse(obj.can1[i].data, 6, 2, 16)/2.55;
 SQ.dispatch(5, pid11);
 }

 else if (pid(obj.can1[i].data) === "1F"){ // run since start
 let pid1f = SQ.parse(obj.can1[i].data, 6, 4, 16);
 SQ.dispatch(6, pid1f);
 }
 else if (pid(obj.can1[i].data) === "2F"){ // fuel level
 let pid2f = SQ.parse(obj.can1[i].data, 6, 2, 16)/2.55;
 SQ.dispatch(7, pid2f);

 }
 }
 }

 }

}, null);

