

 Document Number Revision Prepared By Approved By
 APN0041 A JG NB

 Title Page
 CAN Integration with BBA Pump Controller 1 of 21

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

CAN INTEGRATION WITH A BBA PUMP CONTROLLER

1. Overview

BBA Pumps is a leading global manufacturer of mobile pump systems designed for construction, mining, and flood

control applications.

By integrating a Senquip device with the BBA control panel, users gain real-time visibility of pump operation,

enabling proactive maintenance, faster response to faults, and improved operational efficiency.

Figure 1 - BBA Pump in Action

2. Introduction
BBA Pumps equips many of their mobile pump systems with LC40 control panels, providing advanced monitoring,
control, and protection features via a CAN (Controller Area Network) interface. The LC40 panel broadcasts
operational data such as engine status, pump parameters, fault codes, and system alarms across the CAN bus, while
also accepting remote control commands such as start and stop.

This application note describes how to interface a Senquip telemetry device with a BBA Pump fitted with an LC40
control panel. By connecting to the CAN network, the Senquip device enables both remote monitoring of critical
pump parameters and remote start/stop control of the pump system. This integration allows operators to manage
pumps in real time, improving asset utilization, enabling proactive maintenance, and reducing the need for site visits,
particularly in remote or unmanned locations.

https://www.bbapumps.com/

 Document Number Revision Prepared By Approved By
 APN0041 A JG NB

 Title Page
 CAN Integration with BBA Pump Controller 2 of 21

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Figure 2 – BBA LC45 Control Panel

The following sections provide guidance on wiring, configuration, and scripts required for the Senquip device.

Disclaimer: The information provided in this application note is intended for informational purposes only. Users of
the remote machine control system described herein should exercise caution and adhere to all relevant safety
guidelines and regulations. By utilising the information provided in this application note, users acknowledge their
understanding and acceptance of the associated risks. The authors and contributors disclaim any warranties,
expressed or implied, regarding the accuracy or completeness of the information presented.

 Document Number Revision Prepared By Approved By
 APN0041 A JG NB

 Title Page
 CAN Integration with BBA Pump Controller 3 of 21

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

3. Wiring the Senquip Device to the BBA LC40 Controller
In this application note, we will use CAN port 1 on a QUAD-C2 wired to the external device connector, J20, on the
BBA LC40 controller.

Figure 3 - CAN Connector on the BBA Controller

The matching connector for the LC40 control panel external device connector is a Deutsch HDP24-18-14-S-N. A pre-
made cable is available from BBA. The following connections are required:

Connection Senquip QUAD BBA LC40 J20

CAN H Pin 11, CAN1 H Pin G, CAN HIGH

CAN L Pin 12, CAN1 L Pin H, CAN LOW

GND Pin 8, GND Pin F, GROUND

PWR Pin 1, PWR Pin A, BATTERY + FUSED

GND Pin 2, GND Pin F, Ground

Since the Senquip device and Deep Sea controller share a common power supply ground, the ground connection
between pins 8 and F is not required. If a screened wire is available, it should be connected to either the Senquip or
Deep Sea controller ground but not both. Connecting to both can create a ground loop which will be susceptible to
magnetic fields.

J20

J20

 Document Number Revision Prepared By Approved By
 APN0041 A JG NB

 Title Page
 CAN Integration with BBA Pump Controller 4 of 21

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Figure 4 - LC40 External Device Connector Plug

If the Senquip device and BBA controller are at the end of the line on the CAN network, then a 120ohm termination
resistor must be placed at each end of the line.

Figure 5 - Senquip QUAD to LC40 Wiring

 Document Number Revision Prepared By Approved By
 APN0041 A JG NB

 Title Page
 CAN Integration with BBA Pump Controller 5 of 21

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

4. Senquip Device Configuration
We get the communications specification for the BBA LC40 controller from the CATTRON CANplus Panel API Manual.
A newer 2023 version of this manual is available from BBA.

The CAN Bus Specifications are found to be as follows. The Senquip device CAN port is configured accordingly.

Parameter Value

Bit rate 250kbit/s

Protocol J1939

The CAN Capture Time is set to be the same as the base interval, 5 seconds, so that all CAN messages are captured.
TX Enable is ticked to allow messages to be transmitted onto the CAN network. For debug purposes, Send Raw Data
is also ticked. This can be turned off once the application is completed.

Figure 6 - Senquip QUAD CAN Port Settings

https://www.cattron.com/wp-content/uploads/canplus_api_document_mar2021.pdf

 Document Number Revision Prepared By Approved By
 APN0041 A JG NB

 Title Page
 CAN Integration with BBA Pump Controller 6 of 21

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

5. LC40 CAN Messaging
The LC40 control panel communicates over a J1939-based CAN bus using a mix of standard and proprietary PGNs.
While some broadcast messages use standard J1939 PGNs, most command and data exchanges—such as reading
sensor values or issuing control commands—are handled using the proprietary PGN 65525 (Database Command).
This PGN provides a mechanism for accessing and modifying database parameters within the controller by specifying
a parameter address, command type, priority, and optional time to live.

Parameter Group Number 65525 (0xFFF5)

Transmission Repetition Rate On Request

Data Length 8

The 8 data bytes are defined as follows:

Start Position Length Parameter Name

1.1 5 bits Database Command

1.6 2 bits Database Priority

2.1 1 byte Time to Live

3.1 2 bytes Database Parameter Address

5.1 4 bytes Database Parameter Value

Valid Database Commands are below. We will use command number 1 to read engine coolant temperature, oil
temperature, engine speed, engine hours, controller status, fuel rate, fuel level, and torque. Other parameters are
available if required.

We will use command 2 to change the controller state between Auto and Manual, and to start and stop the pump.

Command
Number

Description

1 Read a database parameter

2 Write a database parameter

3 Response to a read command

4 Response to a write command

5 Subscription to publish

Priority is defined as below. The API manual is not clear on priorities for read requests and so a priority of Normal
will be chosen. When sending remote start or stop commands priority Override will be used. While not explicitly
documented, this priority likely ensures the command is acted on regardless of the panel’s operating mode. We will
only allow remote start from Manual mode.

Priority Decode Value

Low 0

Normal 1

External 2

Override 3

The TTL (Time to Live) determines how long the written value remains valid in volatile memory for runtime
parameters. When writing to configuration registers, (CAN address less than 1000), it is recommended to use TTL

 Document Number Revision Prepared By Approved By
 APN0041 A JG NB

 Title Page
 CAN Integration with BBA Pump Controller 7 of 21

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Infinite in which case the change will be saved across power cycles. For reads, TTL is not defined and will be set to
Infinite.

States Decode Value

Invalid 0

TTL Duration 0 - 254

Infinite TTL 255

The full list of parameters that can be read can be found in the CANplus API manual. We will read the following.

Parameter CAN Address Offset Scaling Unit

Engine Coolant Temperature 1003 -40 1°C / bit °C

Engine Oil Temperature 1004 0 1 kPa / bit kPa

Engine Speed 1000 0 1 RPM / bit RPM

Engine Hours 1013 0 0.05 hours / bit hours

Engine Fuel Rate 1248 0 0.05 l/h / bit l/h

Fuel Level 1091 0 .01 % / bit %

Panel Operating Mode 1036

Engine Running 1041

Panel operating modes are defined as below. We will enable remote Auto Start / Manual control and remote Start /
Stop. Although not clearly documented, we are told that remote start can only be used from Auto Start mode.

Mode Name Description

0 Manual Start Panel in manual mode. Engine will start/stop based on configured triggers.

1 Auto Start Panel in automatic mode. No auto-start behavior.

2 Manual Start Sleep System in low-power state after manual operation; monitoring and output
functionality may be reduced.

3 Auto Start Sleep Low-power mode but Auto Start conditions are still monitored.

4 Shutting Down Panel is actively executing a shutdown sequence (e.g., after stop command or
fault).

By combining the Database Command, Database Priority, Time to Live, Database Parameter Address, and Database
Parameter Value, we can assemble the full CAN message for each of the parameters we want to read. Note how the
address and data fields are reversed as J1939 is little endian.

 Byte 1 Byte 2 Byte 3-4 Byte 5-8 Full Message

Parameter Spare
bit 8

Priority
(bits 6-7)

Command
(bits 1-5)

Hex (1
byte)

TTL (1
byte)

Address
(2 bytes)

Value (4
bytes)

Data Bytes (8 bytes)

Engine Coolant
Temperature

0 01 -
Normal

00001 -
Read

0x21 0xFF -
Infinite

0xEB03 0x0000 -
NA

21 FF EB 03 00 00 00 00

Engine Oil
Temperature

0 01 -
Normal

00001 -
Read

0x21 0xFF -
Infinite

0xEC03 0x0000 -
NA

21 FF EC 03 00 00 00 00

Engine Speed 0 01 -
Normal

00001 -
Read

0x21 0xFF -
Infinite

0xE803 0x0000 -
NA

21 FF E8 03 00 00 00 00

Engine Hours 0 01 -
Normal

00001 -
Read

0x21 0xFF -
Infinite

0xF503 0x0000 -
NA

21 FF F5 03 00 00 00 00

 Document Number Revision Prepared By Approved By
 APN0041 A JG NB

 Title Page
 CAN Integration with BBA Pump Controller 8 of 21

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Engine Fuel
Rate

0 01 -
Normal

00001 -
Read

0x21 0xFF -
Infinite

0xE004 0x0000 -
NA

21 FF E0 04 00 00 00 00

Fuel Level 0 01 -
Normal

00001 -
Read

0x21 0xFF -
Infinite

0x4304 0x0000 -
NA

21 FF 43 04 00 00 00 00

Panel
Operating
Mode

0 01 -
Normal

00001 -
Read

0x21 0xFF -
Infinite

0x0C04 0x0000 -
NA

21 FF 0C 04 00 00 00 00

Engine
Running

0 01 -
Normal

00001 -
Read

0x21 0xFF -
Infinite

0x1104 0x0000 -
NA

21 FF 11 04 00 00 00 00

Likewise, we can define the registers that we want to write.

 Byte 1 Byte 2 Byte 3-4 Byte 5-8 Full Message

Parameter Spare
bit 8

Priority
(bits 7-6)

Command
(bits 5-1)

Hex (1
byte)

TTL (1
byte)

Address
(2 bytes)

Value (4
bytes)

Data Bytes (8 bytes)

Panel
Operating
Mode – set to
Manual

0 11 -
Override

00010 -
Write

0x62 0xFF -
Infinite

0x1C05 0x0000 –
Manual

62 FF 1C 05 00 00 00 00

Panel
Operating
Mode – set to
Auto Start

0 11 -
Override

00010 -
Write

0x62 0xFF -
Infinite

0x1C05 0x1000 –
Auto Start

62 FF 1C 05 01 00 00 00

Start/Stop
Override –
Start Engine

0 11 -
Override

00010 –
Write

0x62 0xFF -
Infinite

0x0404 0x1000 -
Start

62 FF 04 04 01 00 00 00

Start/Stop
Override –
Stop Engine

0 11 -
Override

00010 -
Write

0x62 0xFF -
Infinite

0x0404 0x0000 -
Stop

62 FF 04 04 00 00 00 00

5.1. Source Address
When transmitting onto the CAN bus, we need a source address. In SAE J1939-71 (Vehicle Application Layer), Source
Address 248 is designated as "Miscellaneous" or "Other" in. It is typically used for devices that do not fit into the
predefined functional categories (e.g., engine, transmission, or data logger) or for proprietary or auxiliary devices.
We will use Source Address 248 (0xF8).

5.2. Priority
The API documentation does not specify a required priority for reads. We will use a low priority of 6 for read
operations. Using the CAN ID Calculator on the Senquip documents page, we can calculate the CAN IDs for a read.

Warning: While the CATTRON CANplus API manual lists the "Panel Operating Mode" at database address 1036,

this address may not function on BBA pump controllers. In field testing, and as confirmed by Cattron technical

support, the correct operational address is 1308 (0x051C).

https://cdn.senquip.com/wp-content/uploads/2024/04/18145057/SOF0002-Rev-1.1-CAN-ID-Calculator.xlsx
https://senquip.com/homepage/products/#products-documents

 Document Number Revision Prepared By Approved By
 APN0041 A JG NB

 Title Page
 CAN Integration with BBA Pump Controller 9 of 21

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Figure 7 - Senquip CAN ID Calculator

Although a read priority is not specifically stated in the API, a high priority is consistent with remote commands

being treated as override commands of high priority. For a write, we will use priority 3.

Operation CAN ID

Read 0x18FFF5F8

Write 0x0CFFF5F8

6. Implementing Remote Monitoring and Control in a Script
We will now write a script to enable remote monitoring and starting and stopping of a BBA pump using the LC40
controller. The full script is available in Appendix B. It is assumed that the reader has scripting access, and that they
have a fair knowledge of the Senquip scripting language. Further details on the Senquip scripting language can be
found in the Senquip Scripting Guide.

6.1. Initialisation
First, we load the required libraries. A structure is created that contains all the parameters that are to be read. If
extra parameters are required, they need to be added to this structure.

Warning: Because of new features used in this script, please update your firmware version to SFW003-6.0.0 or

later.

https://docs.senquip.com/scripting_guide/

 Document Number Revision Prepared By Approved By
 APN0041 A JG NB

 Title Page
 CAN Integration with BBA Pump Controller 10 of 21

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

6.2. Reading the CAN Parameters
The 8 CAN parameters will re requested in the order in which the appear in the parameters structure. Ideally all 8
parameters should be requested and received back during the measurement cycle and before the data handler is
called. If they are not available before the data handler is called, they will not be able to be interpreted and
dispatched for display on the Senquip Portal. A small delay between reads is recommended in the API manual. To
achieve this, a new pre handler, available in SFW006 will be used.

Figure 8 – Pre Handler Order of Operations

The API manual suggests a delay between CAN read requests to prevent overwhelming the CAN Bus. Although this is
unlikely, a 100msec delay is inserted between read requests.

The pre handler is initialised with the optional flag SQ.PRE_DURING. This flag directs the pre handler to run during
the measurement cycle. This allows for future implementations of the handler that run, for instance, before the
measurement cycle.

In the pre handler, a call is made to function read_can_timed() to request the first CAN parameter. The function
initialises a timer that will timeout in 100msec and call function read_param(), which prepares a parameter request
message and transmits it. If the parameter being requested is not the last, then read_can_timed() is called again to
schedule the next parameter request. When all the parameters have been requested, SQ.pre_handler_complete() is
called, indicating that the pre handler is complete, and that the data handler can start when the measurement cycle
completes.

Wait for cycle
Pre Handler

Start
Measurement Pre Handler End Data Handler Send Data Wait for Cycle

load('senquip.js');

load('api_timer.js');

let params = [

 {'addr' : 1003, 'value' : NaN }, // Engine Coolant Temperature

 {'addr' : 1004, 'value' : NaN }, // Engine Oil Temperature

 {'addr' : 1000, 'value' : NaN }, // Engine Speed

 {'addr' : 1013, 'value' : NaN }, // Engine Hours

 {'addr' : 1248, 'value' : NaN }, // Engine Fuel Rate

 {'addr' : 1091, 'value' : NaN }, // Fuel Level

 {'addr' : 1036, 'value' : NaN },// Panel Operating Mode

 {'addr' : 1041, 'value' : NaN }];// Engine Running

 Document Number Revision Prepared By Approved By
 APN0041 A JG NB

 Title Page
 CAN Integration with BBA Pump Controller 11 of 21

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

In the main data handler, the JSON format measurements are parsed into an object. If data has been measured on
CAN1, then all the received messages are cycled through, in each case looking for PGN 65525. If the PGN is found,
the command code is checked for the value 3, in which case it is a response to a read request.

When a read response is found, the address is checked to find what parameter has been received. The data byes are
extracted from the CAN message and are scaled and offset to create the required parameter. The use of the
SQ.parse() function is well described in the Scripting Guide and other application notes and will not be covered
further here. Only a few messages are shown below, the full script is available in Appendix B.

For the Panel Operating Mode and Engine Running parameters, simple logic is applied to the value to allow a status
text message to be dispatched to the Senquip Portal.

To simplify integration and streamline data handling, Senquip has introduced a new feature: Standard Keys. When
dispatching parameters to the Senquip Portal, users previously had to define custom parameters for commonly used
engine metrics—such as engine speed, oil temperature, and coolant pressure. This process could be time-consuming
and inconsistent across devices. With the introduction of Standard Keys, these common parameters can now be
referenced using predefined, recognised names. This enhances data uniformity, reduces setup time, and allows for
easier display and analysis on the Senquip Portal.

The following standard keys are available:

Key Unit Key Unit
eng_hrs Hours

 eng_load Percent

 idle_hrs Hours

 eng_temp Degrees C

 run_hrs Hours

 coolant_temp Degrees C

 total_fuel Litres

 coolant_level Percent

/* Read a single CAN parameter */

function read_param(index) {

 let message = "\x21\xFF" + SQ.encode(params[index].addr, -SQ.U16) + "\x00\x00\x00\x00"; // assemble the

request message

 CAN.tx(1, 0x18FFF5F8, message, 8, CAN.EXT); // transmit the request

 index++; // Increment the index

 if (index < params.length) {

 read_can_timed(index); // Start the next timed read

 }

 else{

 SQ.pre_handler_complete(); // allow the data handler to run

 }

}

/* Cycles through all the requests with a 100msec interval */

function read_can_timed(index) {

 Timer.set(100, 0, function(userdata) { // Pass index to the timer function as the userdata parameter

 read_param(userdata); // request a single parameter

 }, index);

}

/* Start the CAN requests */

let type = SQ.PRE_DURING;

SQ.set_pre_handler(type, function() {

 read_can_timed(0); // request the first CAN parameter

}, null);

 Document Number Revision Prepared By Approved By
 APN0041 A JG NB

 Title Page
 CAN Integration with BBA Pump Controller 12 of 21

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

 idle_fuel Litres

 coolant_pressure kPa

 run_fuel Litres

 oil_temp Degrees C

 fuel_level Percent

 oil_pressure kPa

 fuel_rate Litres/hour

 oil_level Percent

 trip_fuel Litres

 trans_temp Degrees C

 fuel_economy km/litre

 trans_pressure kPa

 distance_km Kilometres

 trans_level Percent

 eng_speed RPM

SQ.set_data_handler(function(data) {

 let obj = JSON.parse(data);

 if (typeof obj.can1 !== "undefined") {

 for (let i = 0; i < obj.can1.length; i++) {

 if (pgn(obj.can1[i].id) === 65525) { // Database Command PGN

 let command = SQ.parse(obj.can1[i].data, 0, 2, -16); // retrieve the command byte

 if ((command & 0x1F) === 3){ // response to a read command

 let addr = SQ.parse(obj.can1[i].data, 4, 4, -16); // byte 2-3 contain address of the parameter

 if (addr === 1003) {

 let EngineCoolantTemp = SQ.parse(obj.can1[i].data, 8, 8, -16) - 40;

 SQ.dispatch("coolant_temp",EngineCoolantTemp);

 }

 if (addr === 1013) {

 let EngineHours = SQ.parse(obj.can1[i].data, 8, 8, -16) * 0.05;

 SQ.dispatch('eng_hrs',EngineHours);

 }

 if (addr === 1036) {

 let PanelOperatingMode = SQ.parse(obj.can1[i].data, 8, 8, -16);

 if (PanelOperatingMode === 0){

 SQ.dispatch(1,"Manual Start");

 }

 else if (PanelOperatingMode === 1){

 SQ.dispatch(1,"Auto Start");

 }

 else if (PanelOperatingMode === 4){

 SQ.dispatch(1,"Shutting Down");

 }

 }

 if (addr === 1041) {

 let EngineRunning = SQ.parse(obj.can1[i].data, 8, 8, -16);

 if (EngineRunning === 0){

 SQ.dispatch_event(2,"Not Running");

 }

 else if (EngineRunning === 1){

 SQ.dispatch_event(2,"Running");

 }

 }

 }

 }

 }

 }

}, null);

 Document Number Revision Prepared By Approved By
 APN0041 A JG NB

 Title Page
 CAN Integration with BBA Pump Controller 13 of 21

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

6.3. Remote Control
We will use trigger buttons on the Senquip Portal to implement functions to put the generator in Manual, and Auto
Start mode, and to Start and Stop the pump. We create 4 Trigger Parameters on the device scripting page. We have
named the triggers Manual, Auto, Start, and Stop, and have made them yellow, blue, green, and red.

Figure 9 – Creating the Trigger Parameters

Note the confirmation message that will appear when a user activates that start button.

Figure 10 - Example Trigger Button Confirmation Message

When a trigger button is pressed, the next time the Senquip device contacts the Senquip Portal, the trigger will be
retrieved, and the trigger handler will run. In the trigger handler, the trigger number is checked, and if active, the
appropriate parameter write command is assembled and sent. For start and stop commands, an alert message is
dispatched to the Senquip Portal.

Simple logic is applied to the start command to only allow start of the pump from Auto Start mode.

 Document Number Revision Prepared By Approved By
 APN0041 A JG NB

 Title Page
 CAN Integration with BBA Pump Controller 14 of 21

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

Figure 11 - Order of Operations

Stop
Auto
Start

Start Stop

SQ.set_trigger_handler(function(tp){

 if (tp === 1){ //Manual

 let write = "\x62\xFF \x1C\x05\x00\x00\x00\x00";

 CAN.tx(1, 0x0CFFF5F8, write, 8, CAN.EXT); // change to Manual mode

 }

 if (tp === 2){ //Auto Start

 let write = "\x62\xFF\x1C\x05\x01\x00\x00\x00";

 CAN.tx(1, 0x0CFFF5F8, write, 8, CAN.EXT); // change to Auto Start mode

 }

 if (tp === 3){ // Start

 if(params[6].value === 1){

 SQ.dispatch_event(1,SQ.INFO,"Engine Starting");

 let write = "\x62\xFF\04\x04\x01\x00\x00\x00";

 CAN.tx(1, 0x0CFFF5F8, write, 8, CAN.EXT);

 }

 else {

 SQ.dispatch_event(1,SQ.INFO,"Must be in Auto Start Mode to Start Engine");

 }

 }

 if (tp === 4){ // Stop

 SQ.dispatch_event(1,SQ.INFO,"Engine Stopping");

 let write = "\x62\xFF\x04\x04\x00\x00\x00\x00";

 CAN.tx(1, 0x0CFFF5F8, write, 8, CAN.EXT);

 }

},null);

 Document Number Revision Prepared By Approved By
 APN0041 A JG NB

 Title Page
 CAN Integration with BBA Pump Controller 15 of 21

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

7. Conclusions
The Senquip scripting language makes it simple to interface to a BBA LC40 pump controller. Most BBA controllers

use the CATTRON CANplus standard for CAN communication and so the application note is applicable to most other

models of controller.

In addition to data received from the BBA controller, additional parameters such as location, battery voltage, pitch,

roll, and vibration can be added using sensors integrated into the Senquip device. Other sensors can be added to

measure oil quality, tamper and more.

Figure 12 - Typical Portal Display with Minimal Parameters Shown

 Document Number Revision Prepared By Approved By
 APN0041 A JG NB

 Title Page
 CAN Integration with BBA Pump Controller 16 of 21

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

8. Appendix A – Database Parameters

CAN
Addr

MODBUS
Addr Description Scaling Range Notes

1 2 Major Version Number

2 4 Minor Version Number

8 16 Idle Speed 1 RPM/bit 0 - 8000

9 18 Intermediate Speed 1 RPM/bit 0 - 8000

10 20 Run Speed 1 RPM/bit 0 - 8000

11 22 Max Speed 1 RPM/bit 0 - 8000

43 86 Maintain Target Point 0.1 %/bit 0 - 1000

45 90 Maintain Gain 0.0001 /bit
0 -
65535

70 140 Autostart Transducer High Setpoint 0.1 %/bit 0 - 1000

71 142 Autostart Transducer Low Setpoint 0.1 %/bit 0 - 1000

78 156 Transducer 1 4mA Setup Value 1 /bit 32 bit floating point

79 158 Transducer 1 20mA Setup Value 1 /bit 32 bit floating point

81 162 Transducer 1 Display Units

82 164 Transdcuer 1 Display Name Left String

83 166 Transdcuer 1 Display Name Right String

84 168 Transducer 2 4mA Setup Value 1 /bit 32 bit floating point

85 170 Transducer 2 20mA Setup Value 1 /bit 32 bit floating point

87 174 Transducer 2 Display Units

88 176 Transdcuer 2 Display Name Left String

89 178 Transdcuer 2 Display Name Right String

90 180 Transducer 3 4mA Setup Value 1 /bit 32 bit floating point

91 182 Transducer 3 20mA Setup Value 1 /bit 32 bit floating point

93 186 Transducer 3 Display Units

94 188 Transdcuer 3 Display Name Left String

95 190 Transdcuer 3 Display Name Right String

96 192 Transducer 4 4mA Setup Value 1 /bit 32 bit floating point

97 194 Transducer 4 20mA Setup Value 1 /bit 32 bit floating point

99 198 Transducer 4 Display Units

100 200 Transdcuer 4 Display Name Left String

101 202 Transdcuer 4 Display Name Right String

102 204 Transducer 5 4mA Setup Value 1 /bit 32 bit floating point

103 206 Transducer 5 20mA Setup Value 1 /bit 32 bit floating point

105 210 Transducer 5 Display Units

106 212 Transdcuer 5 Display Name Left String

107 214 Transdcuer 5 Display Name Right String

108 216 Transducer 6 4mA Setup Value 1 /bit 32 bit floating point

 Document Number Revision Prepared By Approved By
 APN0041 A JG NB

 Title Page
 CAN Integration with BBA Pump Controller 17 of 21

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

109 218 Transducer 6 20mA Setup Value 1 /bit 32 bit floating point

111 222 Transducer 6 Display Units Decode Table

112 224 Transdcuer 6 Display Name Left String

113 226 Transdcuer 6 Display Name Right String

120 240 Pulse 1 Maximum Frequency 1 Hz/bit 32 bit floating point

121 242 Pulse 1 Maximum Flow Rate 1 /bit 32 bit floating point

122 244 Pulse 1 Flow Rate Display Units

123 246 Pulse 1 Flow Rate Setup Units

124 248 Pulse 1 Display Name Left String

125 250 Pulse 1 Display Name Right String

126 252 Pulse 2 Maximum Frequency 1 Hz/bit 32 bit floating point

127 254 Pulse 2 Maximum Flow Rate 1 /bit 32 bit floating point

128 256 Pulse 2 Flow Rate Display Units

129 258 Pulse 2 Flow Rate Setup Units

130 260 Pulse 2 Display Name Left String

131 262 Pulse 2 Display Name Right String

132 264 Pulse 1 Totalized Pulse Count Raw (Saved) 1 /bit

Raw Unscaled
Data

133 266 Pulse 1 Totalized Setup Units

134 268 Pulse 1 Totalized Display Units

135 270 Pulse 1 Pulses Per 1 Unit Of Measurment 1 /bit 32 bit floating point

136 272 Pulse 2 Totalized Pulse Count Raw (Saved) 1 /bit

Raw Unscaled
Data

137 274 Pulse 2 Totalized Setup Units

138 276 Pulse 2 Totalized Display Units

139 278 Pulse 2 Pulses Per 1 Unit Of Measurment 1 /bit 32 bit floating point

1000 2000 Current Engine Speed 1 RPMs/bit

1003 2006 Engine Coolant Temperature 1 C/bit; Offset: -40

1004 2008 Engine Oil Pressure 1 kPa/bit

1005 2010 Battery Voltage 0.05 Volts/bit

1006 2012 DPF Soot Load 1 %/bit

1007 2014 DPF Ash Load 1 %/bit

1013 2026 Engine Hours 0.05 Hours/bit

1018 2036 Override Request Speed 1 RPMs/bit
1028

(1028) 2056 Start/Stop Override
1036

(1308) 2072 Panel Operating Mode

1041 2082 Engine Running 0 - 1

1054 2108 Number Of Active Faults 1 /bit

1072 2144 Autostart Switch 1 0 - 1

1073 2146 Autostart Switch 2 0 - 1

1091 2182 Fuel Level 0.01 %/bit
0 -
10000

 Document Number Revision Prepared By Approved By
 APN0041 A JG NB

 Title Page
 CAN Integration with BBA Pump Controller 18 of 21

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

1140 2280 Transducer 1 Current 1 uA/bit
0 -
65535

1141 2282 Transducer 1 Percentage 0.1 %/bit 0-1000

1142 2284 Transducer 2 Current 1 uA/bit
0 -
65535

1143 2286 Transducer 2 Percentage 0.1 %/bit 0-1000

1144 2288 Transducer 3 Current 1 uA/bit
0 -
65535

1145 2290 Transducer 3 Percentage 0.1 %/bit 0-1000

1146 2292 Transducer 4 Current 1 uA/bit
0 -
65535

1147 2294 Transducer 4 Percentage 0.1 %/bit 0-1000

1148 2296 Transducer 5 Current 1 uA/bit
0 -
65535

1149 2298 Transducer 5 Percentage 0.1 %/bit 0-1000

1150 2300 Transducer 6 Current 1 uA/bit
0 -
65535

1151 2302 Transducer 6 Percentage 0.1 %/bit 0-1000

1184 2368 Pulse 1 Totalized Pulse Count Raw (Runtime) 1 /bit

Raw Unscaled
Data

1185 2370 Pulse 1 Frequency 1 Hz/bit 32 bit floating point

1186 2372 Pulse 1 Percent of Full Scale 0.1 %/bit 0-1000

1187 2374 Pulse 2 Totalized Pulse Count Raw (Runtime) 1 /bit

Raw Unscaled
Data

1188 2376 Pulse 2 Frequency 1 Hz/bit 32 bit floating point

1189 2378 Pulse 2 Percent of Full Scale 0.1 %/bit 0-1000

1190 2380 Pulse 1 Scaled Total 1 /bit 32 bit floating point

1191 2382 Pulse 2 Scaled Total 1 /bit 32 bit floating point

1227 2454 Actual Torque 1 %/bit; Offset: -125

1230 2460 Air Inlet Temperature 1 C/bit; Offset: -40

1243 2486 Engine Oil Temperature 0.03125 C/bit; Offset: -273

1248 2496 Engine Fuel Rate 0.05 I/h/bit

1255 2510 Load Percentage At RPM 1 %/bit

1256 2512 Requested Torque 1 %/bit; Offset: -125

1257 2514 DEF Level 0.1 %/bit

1268 2536 Scaled Transducer 1 Value 32 bit floating point

1269 2538 Scaled Transducer 2 Value 32 bit floating point

1270 2540 Scaled Transducer 3 Value 32 bit floating point

1271 2542 Scaled Transducer 4 Value 32 bit floating point

1272 2544 Scaled Transducer 5 Value 32 bit floating point

1273 2546 Scaled Transducer 6 Value 32 bit floating point

 Document Number Revision Prepared By Approved By
 APN0041 A JG NB

 Title Page
 CAN Integration with BBA Pump Controller 19 of 21

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

9. Appendix B – Full Application Script

load('senquip.js');

load('api_timer.js');

let params = [

 {'addr' : 1003, 'value' : NaN }, // Engine Coolant Temperature

 {'addr' : 1004, 'value' : NaN }, // Engine Oil Temperature

 {'addr' : 1000, 'value' : NaN }, // Engine Speed

 {'addr' : 1013, 'value' : NaN }, // Engine Hours

 {'addr' : 1248, 'value' : NaN }, // Engine Fuel Rate

 {'addr' : 1091, 'value' : NaN }, // Fuel Level

 {'addr' : 1036, 'value' : NaN }, // Panel Operating Mode

 {'addr' : 1041, 'value' : NaN }];// Engine Running

/* Read a single CAN parameter */

function read_param(index) {

 let message = "\x21\xFF" + SQ.encode(params[index].addr, -SQ.U16) + "\x00\x00\x00\x00"; // assemble the

request message

 CAN.tx(1, 0x18FFF5F8, message, 8, CAN.EXT); // transmit the request

 index++; // Increment the index

 if (index < params.length) {

 read_can_timed(index); // Start the next timed read

 }

 else{

 SQ.pre_handler_complete(); // allow the data handler to run

 }

}

/* Cycles through all the requests with a 100msec interval */

function read_can_timed(index) {

 Timer.set(100, 0, function(userdata) { // Pass index to the timer function as the userdata parameter

 read_param(userdata); // request a single parameter

 }, index);

}

/* Start the CAN requests */

let type = SQ.PRE_DURING;

SQ.set_pre_handler(type, function() {

 read_can_timed(0); // request the first CAN parameter

}, null);

/* Given the CAN id, returns the PGN */

function pgn(id) {

 return((id >> 8) & 0x0003FFFF);

}

SQ.set_data_handler(function(data) {

 let obj = JSON.parse(data);

 if (typeof obj.can1 !== "undefined") {

 for (let i = 0; i < obj.can1.length; i++) {

 if (pgn(obj.can1[i].id) === 65525) { // Database Command PGN

 let command = SQ.parse(obj.can1[i].data, 0, 2, -16); // retrieve the command byte

 if ((command & 0x1F) === 3){ // response to a read command

 let addr = SQ.parse(obj.can1[i].data, 4, 4, -16); // byte 2 and 3 contains address of the parameter

 if (addr === 1003) {

 let EngineCoolantTemp = SQ.parse(obj.can1[i].data, 8, 8, -16) - 40;

 SQ.dispatch("coolant_temp",EngineCoolantTemp);

 }

 if (addr === 1004) {

 Document Number Revision Prepared By Approved By
 APN0041 A JG NB

 Title Page
 CAN Integration with BBA Pump Controller 20 of 21

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

 let EngineOilTemperature = SQ.parse(obj.can1[i].data, 8, 8, -16);

 SQ.dispatch("oil_temp",EngineOilTemperature);

 }

 if (addr === 1000) {

 let EngineSpeed = SQ.parse(obj.can1[i].data, 8, 8, -16);

 SQ.dispatch("eng_speed",EngineSpeed);

 }

 if (addr === 1013) {

 let EngineHours = SQ.parse(obj.can1[i].data, 8, 8, -16) * 0.05;

 SQ.dispatch('eng_hrs',EngineHours);

 }

 if (addr === 1248) {

 let EngineFuelRate = SQ.parse(obj.can1[i].data, 8, 8, -16) * 0.05;

 SQ.dispatch('fuel_rate',EngineFuelRate);

 }

 if (addr === 1091) {

 let FuelLevel = SQ.parse(obj.can1[i].data, 8, 8, -16) * 0.01;

 SQ.dispatch('fuel_level',FuelLevel);

 }

 if (addr === 1036) {

 let PanelOperatingMode = SQ.parse(obj.can1[i].data, 8, 8, -16);

 if (PanelOperatingMode === 0){

 SQ.dispatch(1,"Manual Start");

 }

 else if (PanelOperatingMode === 1){

 SQ.dispatch(1,"Auto Start");

 }

 else if (PanelOperatingMode === 4){

 SQ.dispatch(1,"Shutting Down");

 }

 }

 if (addr === 1041) {

 let EngineRunning = SQ.parse(obj.can1[i].data, 8, 8, -16);

 if (EngineRunning === 0){

 SQ.dispatch_event(2,"Not Running");

 }

 else if (EngineRunning === 1){

 SQ.dispatch_event(2,"Running");

 }

 }

 }

 }

 }

 }

}, null);

//----------------------------------

SQ.set_trigger_handler(function(tp){

 if (tp === 1){ //Manual

 let write = "\x62\xFF\x1C\x05\x00\x00\x00\x00";

 CAN.tx(1, 0x0CFFF5F8, write, 8, CAN.EXT); // change to Manual mode

 }

 if (tp === 2){ //Auto Start

 let write = "\x62\xFF\x1C\0x05\x01\x00\x00\x00";

 CAN.tx(1, 0x0CFFF5F8, write, 8, CAN.EXT); // change to Auto Start mode

 }

 if (tp === 3){ // Start

 if(params[6].value === 1){

 SQ.dispatch_event(1,SQ.INFO,"Engine Starting");

 let write = "\x62\xFF\x04\x04\x01\x00\x00\x00";

 CAN.tx(1, 0x0CFFF5F8, write, 8, CAN.EXT);

 }

 else {

 SQ.dispatch_event(1,SQ.INFO,"Must be in Auto Start Mode to Remotely Start Engine");

 }

 Document Number Revision Prepared By Approved By
 APN0041 A JG NB

 Title Page
 CAN Integration with BBA Pump Controller 21 of 21

Copyright © 2022 Senquip Pty Ltd. Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document. The

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means,

without the prior written consent of the Company.

 }

 if (tp === 4){ // Stop

 SQ.dispatch_event(1,SQ.INFO,"Engine Stopping");

 let write = "\x62\xFF\x04\x04\x00\x00\x00\x00";

 CAN.tx(1, 0x0CFFF5F8, write, 8, CAN.EXT);

 }

},null);

