
 

 Document Number Revision Prepared By Approved By 
 APN0042  1.1 NGB NB 

 Title  Page 
 Integration with Kensho Controller 1 of 12 

 
 

 

Copyright © 2025 Senquip Pty Ltd.  Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document.  The 

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means, 

without the prior written consent of the Company. 

INTEGRATION WITH A KENSHO CONTROLLER 

1. Overview 

Kensho offers a range of diesel engine controllers designed for off-road stationary applications such as irrigation, 

dewatering, power generation, and firefighting. These controllers are engineered to enhance engine performance, 

reduce operational costs, and provide robust protection and remote monitoring capabilities 

By integrating a Senquip device with a Kensho control panel, users gain real-time visibility and control of engine 

operation, enabling proactive maintenance, faster response to faults, and improved operational efficiency. 

 

Figure 1 – Kensho K27 Controller 

This application note describes how to interface a Senquip telemetry device with a Kensho K27 controller via 
Modbus over RS485.  By connecting to the RS485 network, the Senquip device enables both remote monitoring of 
engine parameters and remote start/stop control. This integration allows operators to engines in real time, 
improving asset utilisation, enabling proactive maintenance, and reducing the need for site visits, particularly in 
remote or unmanned locations. The concepts applied in this application note are also applicable to the K21, and K37 
controller. The interface and available data may however vary. 

The following sections provide guidance on wiring, configuration, and scripts required for the Senquip device. 

 

Disclaimer:  The information provided in this application note is intended for informational purposes only. Users of 
the remote machine control system described herein should exercise caution and adhere to all relevant safety 
guidelines and regulations.  By utilising the information provided in this application note, users acknowledge their 
understanding and acceptance of the associated risks. The authors and contributors disclaim any warranties, 
expressed or implied, regarding the accuracy or completeness of the information presented. 

 

  

https://www.kenshoworld.com/index.html


 

 Document Number Revision Prepared By Approved By 
 APN0042  1.1 NGB NB 

 Title  Page 
 Integration with Kensho Controller 2 of 12 

 
 

 

Copyright © 2025 Senquip Pty Ltd.  Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document.  The 

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means, 

without the prior written consent of the Company. 

2. Wiring the Senquip Device to Kensho K27 Controller 
In this application note, we will use the RS485 serial port on a Senquip ORB, wired to the telemetry port on 
connector C on the rear of the Kensho panel. RS485 is stated as the default for the telemetry port, however it may 
have been changed to RS232.  If this is the case, it will need to be changed back, and the panel reset. 

 

Figure 2 – Connector C on the Rear of the K27  

 

Figure 3 - Telemetry Connector Supplied with Wiring Loom 

Some Kensho controllers may be supplied with a wiring loom that contains a Telemetry Ready Connector.  The 
specifications of this connector are: 

Brand Bulgin 

Series Buccaneer 

Contacts 4 

Mounting Cable mount 

IP Rating IP68 

Connector on K27 PX07 47/S (socket) 

Mating connector PX07 48/P (plug) 

 

Figure 4 - Bulgin Buccaneer Plug 

The following connections are required: 

Connection Senquip QUAD K27 on Controller K27 on Telemetry Connector 

RS485 A Pin 7, A / TX C7, COMMS RX (A) 3 

RS485 B Pin 6, B / RX C8, COMMS Tx (B) 2 

GND Pin 2, GND C9, BAT- 4 

Switched PWR Pin 1, PWR + C1, SW BAT+ 1 

 



 

 Document Number Revision Prepared By Approved By 
 APN0042  1.1 NGB NB 

 Title  Page 
 Integration with Kensho Controller 3 of 12 

 
 

 

Copyright © 2025 Senquip Pty Ltd.  Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document.  The 

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means, 

without the prior written consent of the Company. 

If a screened wire is available, it should be connected to either the Senquip or the Kensho controller ground but not 
both.  Connecting to both can create a ground loop which will be susceptible to magnetic fields. 

The K27 does not include the RS485 120 ohm termination resistor. If the cable length between the controller and 
Senquip device is long, or communications are unstable, one should be fitted.  The termination resistor on the 
Senquip device is selected as a setting and will be turned on. 

 

Figure 5 - Senquip ORB to LC40 Wiring 

3. Senquip Device Configuration 
We get the communications specification for the K270 controller from the K27 Engine Control Operation Manual. 
The manual contains panel setup information, and a Modbus register map. 

The default serial port settings are found to be: 

Parameter Value 

Interface RS485 

Bit rate 9600bps 

Data bits 8 

Stop bits 1 

Parity None 

Protocol Modbus RTU 

Address 10 

 

Note that if multiple Kensho controllers are on the same RS485 network, they will each need a different Modbus 
Address.  

The serial port on the Senquip device is configured to mirror the K27 default settings: 

 
 

 
 

 
 

 
 

 
 
 
 

 
 
 

   

   

    

   

   

      

   

   

     

     

    

    

         

     

    

      
     

 
  



 

 Document Number Revision Prepared By Approved By 
 APN0042  1.1 NGB NB 

 Title  Page 
 Integration with Kensho Controller 4 of 12 

 
 

 

Copyright © 2025 Senquip Pty Ltd.  Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document.  The 

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means, 

without the prior written consent of the Company. 

 

Figure 6 - Senquip Serial Port Settings 

4. Reading Values from the Controller 
The K27 control panel communicates over Modbus RTU. A Modbus register map is available. All data is read as a 16 
bit unsigned word.  The Modbus map uses reference (Modicon) addressing where the leading “ ” tells us that the 
registers are holding registers.  The first register, 40001, will have address 0. 

Modicon Address (K27) Absolute Addressing (Senquip) 

40001 0 (holding register) 

40002 1 (holding register) 

 

We will read the following 16-bit holding registers: 

MODBUS Source Description Resolution 

40001 J1939 Percent Load 1%/bit 

40002 J1939 Engine RPM 0.125/bit 

40003 J1939 Total Engine Hours LSB 0.05Hrs/bit 

40004 J1939 Total Engine Hours MSB 

40005 J1939 Engine Coolant Temp 1°C/bit (-40°C offset) 

40006 J1939 Engine Oil Temp 0.03125°C/bit (-273°C offset) 

40007 J1939 Engine Oil Pressure 4kPa/bit, 0.58015psi/bit 

40008 J1939 Coolant Level 0.4%/bit 

40009 J1939 Fuel Rate 0.05L/H/bit 

40010 J1939 Boost Pressure 2kPa/bit, 0.29007psi/bit 

40011 J1939 Intake Manifold Temp 1°C/bit (-40°C offset) 

40013 J1939 Battery Potential 0.05V/bit 

40061  Status / Fault Code See Appendix A – K27 Fault Codes 

 



 

 Document Number Revision Prepared By Approved By 
 APN0042  1.1 NGB NB 

 Title  Page 
 Integration with Kensho Controller 5 of 12 

 
 

 

Copyright © 2025 Senquip Pty Ltd.  Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document.  The 

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means, 

without the prior written consent of the Company. 

The Senquip device Modbus map is configured accordingly: 

 

Notice how calibration has been applied directly to the register read, where required.  For example, Engine RPM is 
given as 0.125 per bit and is implemented as below.  In this example, 0 bit will give 0 RPM and 1 bit will give 0.125 
RPM. 

 

Figure 7 - Engine Speed Calibration 

The engine hours are read as a single 32 bit number using little Endian format where 40003, the lower word will 
arrive first and 40004, the higher word will arrive last. 

 

Figure 8 - Engine Hours Read as Two 16 Bit Words 



 

 Document Number Revision Prepared By Approved By 
 APN0042  1.1 NGB NB 

 Title  Page 
 Integration with Kensho Controller 6 of 12 

 
 

 

Copyright © 2025 Senquip Pty Ltd.  Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document.  The 

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means, 

without the prior written consent of the Company. 

Instead of displaying the controller status code, we will display the text description provided in Appendix A – K27 

Fault Codes. 

5. Remote Control 
To ensure write commands are accepted by the controller, you must first change or increment the value in 
Configuration Register 40023. This mechanism prevents accidental or repeated actions. 

For example, to issue a Start or Stop command via Modbus: 

1. Set Start Type to Momentary in the controller menu: 
3. User Settings → 14. Start Types → 1. Set Start Types 

2. Change or increment Register 40023. 
a. Provide enough time for a response 

3. Write to Register 40020: 
a. 0xAA to start 
b. 0x55 to stop 

4. Before issuing a new command, change or increment Register 40023 again. 
 
We will write a script to perform start and stop functions. The full script is available in Appendix B.  It is assumed that 
the reader has scripting access, and that they have a fair knowledge of the Senquip scripting language.  Further 
details on the Senquip scripting language can be found in the Senquip Scripting Guide. 

 

6. The Device Script 
First, we load the required libraries and create a global variable that will be incremented and sent to the 
Configuration Register before issuing a command.  

 

Displaying the status in a meaningful way requires that we interpret the Modbus status code in accordance with the 
text descriptions described in Appendix A – K27 Fault Codes. A function is created, which when called with the status 
code, returns the text description of that code. To do this, we use an object with the status code as key, and the 
descriptor as data.  A shortened version of the function is shown below. 

 

Warning: Because of new features used in this script, please update your firmware version to SFW003-6.0.0 or 

later. 

load('senquip.js'); 

load('api_timer.js'); 

load('api_serial.js'); 

 

let configReg = 0; // value that will be incremented before each write 

 

function statusLookup(i) { 

  let enum_lookup = { 

    '0': 'Normal Operation', 

    '1': 'Low Oil Pressure', 

    '2': 'High Engine Temp.', 

    '3': 'Auxiliary 3', 

    '4': 'Loss of Flow Sw.', 

  }; 

  return enum_lookup[i] || 'Default';  

} 

 

https://docs.senquip.com/scripting_guide/


 

 Document Number Revision Prepared By Approved By 
 APN0042  1.1 NGB NB 

 Title  Page 
 Integration with Kensho Controller 7 of 12 

 
 

 

Copyright © 2025 Senquip Pty Ltd.  Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document.  The 

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means, 

without the prior written consent of the Company. 

The function is called once every base interval. 

 

To perform engine starting and stopping, we need to perform Modbus writes.  A function, writeMod, is created to 
write an unsigned 16-bit value to a Modbus holding register. The function accepts an object containing the slave 
address (sadr), register address (radr), and value (val) to be written. 

It constructs a Modbus write message (function code 6) by encoding the slave address as a 1-byte hexadecimal string 
and both the register and value as 2-byte hexadecimal strings using the SQ.encode() function. These components are 
concatenated to form the base Modbus message. 

A CRC checksum is then computed using the SQ.crc() function and encoded with byte order reversed (using -SQ.U16) 
to meet Modbus MSB-first requirements. This completes the full Modbus packet, which is transmitted via 
SERIAL.write() on serial port 1. 

 

Adding Control Buttons 

We will add two trigger buttons for start and stop. The start button will have an associated confirmation message 
that must be acknowledged “Safety Check: Area must be clear before remote start.” 

 

Figure 9 - Configuring Start and Stop Buttons 

SQ.set_data_handler(function(data) { 

  let obj = JSON.parse(data); 

   

  if (typeof obj.mod12 === "number"){ 

      SQ.dispatch(1, statusLookup(obj.mod12)); // status as text 

  } 

}, null); 

 

function writeMod(sendObj){ 

  let s = SQ.encode(sendObj.sadr,SQ.U8); // encode dec address into hex 

  let r = SQ.encode(sendObj.radr,SQ.U16); // encode dec register number into hex 

  let v = SQ.encode(sendObj.val,SQ.U16); // encode dec data into hex 

  let a = s+'\x06'+r+v; // 6 is the MODBUS write unsigned 16 function code 

  let c = SQ.crc(a); // use the Senquip CRC function to calculate the Modbus CRC 

  c = SQ.encode(c, -SQ.U16); // encode the CRC function in hex + flip byte order 

  let t = a+c; // create the final Modbus write message 

  SERIAL.write(1,t,t.length); // send the message to serial port 1 

} 

 



 

 Document Number Revision Prepared By Approved By 
 APN0042  1.1 NGB NB 

 Title  Page 
 Integration with Kensho Controller 8 of 12 

 
 

 

Copyright © 2025 Senquip Pty Ltd.  Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document.  The 

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means, 

without the prior written consent of the Company. 

 

Figure 10 - Start and Stop Buttons on the Device Page and Confirm Message when Start is Pressed 

When a trigger button is pressed, the next time the Senquip device contacts the Senquip Portal, the trigger will be 
retrieved, and the trigger handler will run.  In the trigger handler, the trigger number is checked, and if active, the 
associated script will run on the Senquip device. 

 

The trigger handler handles two trigger types: 

• Trigger 1 (Start Command): 
Increments the configuration register. Logs an informational event ("Engine Starting") to the Senquip Portal. 
Writes the updated config value to Modbus register 22. After a one-second delay, it sends a start command 
(0xAA) to register 19 to initiate engine start. 

• Trigger 2 (Stop Command): 
Similarly increments configReg and logs "Engine Stopping". It writes the updated value to register 22 and, 
after a one-second delay, sends a stop command (0x55) to register 19 to stop the engine. 

Both sequences use writeMod to format and send Modbus messages, and Timer.set to insert a one-second delay 
between the configuration and command writes.  

 

 

Change 
40023

Wait 1 
sec

Issue 
Start

Wait 1 
sec

Change 
40023

Wait 1 
sec

Issue 
Stop

Warning: If the Senquip device goes to sleep before the 1 second timeout, the start or stop write will not 

execute.  A low base interval like 5 second or using the Always On function will ensure the Senquip device stays 

awake. 
SQ.set_trigger_handler(function(tp) { 

  if (tp === 1) { // start 

    configReg++; if (configReg > 65535){configReg = 0;} 

    SQ.dispatch_event(1,SQ.INFO,"Engine Starting"); 

    writeMod({sadr:10, radr:22, val:configReg}); // call the send Modbus routine 

    Timer.set(1000, 0, function() { // After one second, send the 2nd serial string 

      writeMod({sadr:10, radr:19, val:0xAA}); // send the start command 

    }, null); 

  } 

   

  if (tp === 2) { // stop 

    configReg++; if (configReg > 65535){configReg = 0;} 

    SQ.dispatch_event(1,SQ.INFO,"Engine Stopping"); 

    writeMod({sadr:10, radr:22, val:configReg}); // call the send Modbus routine 

    Timer.set(1000, 0, function() { // After one second, send the 2nd serial string 

      writeMod({sadr:10, radr:19, val:0x55}); // send the stop command 

    }, null); 

  } 

}, null); 

 



 

 Document Number Revision Prepared By Approved By 
 APN0042  1.1 NGB NB 

 Title  Page 
 Integration with Kensho Controller 9 of 12 

 
 

 

Copyright © 2025 Senquip Pty Ltd.  Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document.  The 

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means, 

without the prior written consent of the Company. 

7. Conclusions 
The Senquip scripting language makes it simple to interface to a Kensho K27 pump controller.  Most Kensho 

controllers use RS232 or RS485 and a similar Modbus register map, and so the application note is applicable to most 

other models of controller. 

In addition to data received from the BBA controller, additional parameters such as location, battery voltage, pitch, 

roll, and vibration can be added using sensors integrated into the Senquip device.  Other sensors can be added to 

measure oil quality, tamper and more. 

Remote control is easily achieved with the implementation of a short script. 

 

Figure 11 - Typical Pump Display on the Senquip Portal 



 

 Document Number Revision Prepared By Approved By 
 APN0042  1.1 NGB NB 

 Title  Page 
 Integration with Kensho Controller 10 of 12 

 
 

 

Copyright © 2025 Senquip Pty Ltd.  Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document.  The 

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means, 

without the prior written consent of the Company. 

8. Appendix A – K27 Fault Codes 
Code Meaning 
0 Normal Operation 
1 Low Oil Pressure 
2 High Engine Temp. 
3 Auxiliary 3 
4 Loss of Flow Sw. 
5 Alt Failure 
6 Coolant Level Low 
7 Overspeed 
8 Underspeed 
9 Bad or NO RPM 
10 Failed Crank Attempts 
11 Aux. Input 1 
12 Aux. Input 2 
13 Aux. Input 3 
14 Low Fuel Level 
15 Low Pump Press #2 
16 Max Pump Press #2 
17 Low Pump Pressure 
18 Max Pump Pressure 
19 CAN BUS Failure 
20 Pump Temperature 
21 Internal Protection 
22 Suction Pressure 
23 Check ECU Codes 
24 Timer Complete 
25 Normal Shutdown 
26 Dam Level Sensor Error 
29 Low Flow 
30 High Flow 
31 Stagnant Timer 
32 Normal Shutdown 
33 Pressure Stagnant 
34 Gear box Temp 

  



 

 Document Number Revision Prepared By Approved By 
 APN0042  1.1 NGB NB 

 Title  Page 
 Integration with Kensho Controller 11 of 12 

 
 

 

Copyright © 2025 Senquip Pty Ltd.  Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document.  The 

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means, 

without the prior written consent of the Company. 

9. Appendix B – Full Application Script 
 

load('senquip.js'); 

load('api_timer.js'); 

load('api_serial.js'); 

 

let configReg = 0; // value that will be incremented before each write 

 

function statusLookup(i) { 

  let enum_lookup = { 

    '0': 'Normal Operation', 

    '1': 'Low Oil Pressure', 

    '2': 'High Engine Temp.', 

    '3': 'Auxiliary 3', 

    '4': 'Loss of Flow Sw.', 

    '5': 'Alt Failure', 

    '6': 'Coolant Level Low', 

    '7': 'Overspeed', 

    '8': 'Underspeed', 

    '9': 'Bad or NO RPM', 

    '10': 'Failed Crank Attempts', 

    '11': 'Aux. Input 1', 

    '12': 'Aux. Input 2', 

    '13': 'Aux. Input 3', 

    '14': 'Low Fuel Level', 

    '15': 'Low Pump Press #2', 

    '16': 'Max Pump Press #2', 

    '17': 'Low Pump Pressure', 

    '18': 'Max Pump Pressure', 

    '19': 'CAN BUS Failure', 

    '20': 'Pump Temperature', 

    '21': 'Internal Protection', 

    '22': 'Suction Pressure', 

    '23': 'Check ECU Codes', 

    '24': 'Timer Complete', 

    '25': 'Normal Shutdown', 

    '26': 'Dam Level Sensor Error', 

    '29': 'Low Flow', 

    '30': 'High Flow', 

    '31': 'Stagnant Timer', 

    '32': 'Normal Shutdown', 

    '33': 'Pressure Stagnant', 

    '34': 'Gear box Temp' 

  }; 

  return enum_lookup[i] || 'Default';  

} 

 

function writeMod(sendObj){ 

  let s = SQ.encode(sendObj.sadr,SQ.U8); // encode dec address into hex 

  let r = SQ.encode(sendObj.radr,SQ.U16); // encode dec register number into hex 

  let v = SQ.encode(sendObj.val,SQ.U16); // encode dec data into hex 

  let a = s+'\x06'+r+v; // 6 is the MODBUS write unsigned 16 function code 

  let c = SQ.crc(a); // use the Senquip CRC function to calculate the Modbus CRC 

  c = SQ.encode(c, -SQ.U16); // encode the CRC function in hex + flip byte order 

  let t = a+c; // create the final Modbus write message 

  SERIAL.write(1,t,t.length); // send the message to serial port 1 

} 

 

 

SQ.set_data_handler(function(data) { 

  let obj = JSON.parse(data); 

   

  if (typeof obj.mod12 === "number"){ 

      SQ.dispatch(1, statusLookup(obj.mod12)); // status as text 

  } 



 

 Document Number Revision Prepared By Approved By 
 APN0042  1.1 NGB NB 

 Title  Page 
 Integration with Kensho Controller 12 of 12 

 
 

 

Copyright © 2025 Senquip Pty Ltd.  Senquip Pty Ltd (“the Company”) is the owner of the copyright and all confidential information in this document.  The 

document and its text, images, diagrams, data and information it contains must not be copied or reproduced in whole or in part, in any form or by any means, 

without the prior written consent of the Company. 

}, null); 

 

SQ.set_trigger_handler(function(tp) { 

  if (tp === 1) { // start 

    configReg++; if (configReg > 65535){configReg = 0;} 

    SQ.dispatch_event(1,SQ.INFO,"Engine Starting"); 

    writeMod({sadr:10, radr:22, val:configReg}); // call the send Modbus routine 

    Timer.set(1000, 0, function() { // After one second, send the 2nd serial string 

      writeMod({sadr:10, radr:19, val:0xAA}); // send the start command 

    }, null); 

  } 

   

  if (tp === 2) { // stop 

    configReg++; if (configReg > 65535){configReg = 0;} 

    SQ.dispatch_event(1,SQ.INFO,"Engine Stopping"); 

    writeMod({sadr:10, radr:22, val:configReg}); // call the send Modbus routine 

    Timer.set(1000, 0, function() { // After one second, send the 2nd serial string 

      writeMod({sadr:10, radr:19, val:0x55}); // send the stop command 

    }, null); 

  } 

}, null); 

 


